Volume of Revolution, Shell Method

Slides:



Advertisements
Similar presentations
7.2: Volumes by Slicing Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 2001 Little Rock Central High School, Little Rock,
Advertisements

Volumes by Slicing: Disks and Washers
Volumes using washers. Now that you have successfully designed a 4 by 4 meter nose cone, your boss brings to you a larger nose cone that is 16 meters.
Volume by Parallel Cross Section; Disks and Washers
Volumes of Solids of Revolution
Disk and Washer Methods
DO NOW: Find the volume of the solid generated when the
 A k = area of k th rectangle,  f(c k ) – g(c k ) = height,  x k = width. 6.1 Area between two curves.
7.1 Areas Between Curves To find the area: divide the area into n strips of equal width approximate the ith strip by a rectangle with base Δx and height.
Lesson 6-2c Volumes Using Washers. Ice Breaker Volume = ∫ π(15 - 8x² + x 4 ) dx x = 0 x = √3 = π ∫ (15 - 8x² + x 4 ) dx = π (15x – (8/3)x 3 + (1/5)x 5.
Applications of Integration
The Shell Method Volumes by Cylindrical Shells By Christine Li, Per. 4.
Section 6.1 Volumes By Slicing and Rotation About an Axis
Volume: The Disk Method
TOPIC APPLICATIONS VOLUME BY INTEGRATION. define what a solid of revolution is decide which method will best determine the volume of the solid apply the.
Volume. Find the volume of the solid formed by revolving the region bounded by the graphs y = x 3 + x + 1, y = 1, and x = 1 about the line x = 2.
7.3 Day One: Volumes by Slicing Find the volume of the pyramid: Consider a horizontal slice through the pyramid. s dh The volume of the slice.
10 Applications of Definite Integrals Case Study
Integral Calculus One Mark Questions. Choose the Correct Answer 1. The value of is (a) (b) (c) 0(d)  2. The value of is (a) (b) 0 (c) (d) 
Review: Volumes of Revolution. x y A 45 o wedge is cut from a cylinder of radius 3 as shown. Find the volume of the wedge. You could slice this wedge.
Volume: The Shell Method Lesson 7.3. Find the volume generated when this shape is revolved about the y axis. We can’t solve for x, so we can’t use a horizontal.
Lesson 6-2b Volumes Using Discs. Ice Breaker Homework Check (Section 6-1) AP Problem 1: A particle moves in a straight line with velocity v(t) = t². How.
Section 7.2 Solids of Revolution. 1 st Day Solids with Known Cross Sections.
MTH 252 Integral Calculus Chapter 7 – Applications of the Definite Integral Section 7.3 – Volumes by Cylindrical Shells Copyright © 2006 by Ron Wallace,
Do Now: #10 on p.391 Cross section width: Cross section area: Volume:
Engineering Mechanics: Statics
7.3 VOLUMES. Solids with Known Cross Sections If A(x) is the area of a cross section of a solid and A(x) is continuous on [a, b], then the volume of the.
7.3 day 2 Disks, Washers and Shells Limerick Nuclear Generating Station, Pottstown, Pennsylvania.
Section 7.3 – Volume: Shell Method. White Board Challenge Calculate the volume of the solid obtained by rotating the region bounded by y = x 2, x=0, and.
Volumes of Revolution Disks and Washers
Chapter 7. Applications of the Definite integral in Geometry, Science, and Engineering By Jiwoo Lee Edited by Wonhee Lee.
Lesson 6-2a Volumes Known Cross-sectional Areas. Ice Breaker Find the volume of the region bounded by y = 1, y = x² and the y-axis revolved about the.
Volumes of Revolution The Shell Method Lesson 7.3.
6.1 Areas Between Curves 1 Dr. Erickson. 6.1 Areas Between Curves2 How can we find the area between these two curves? We could split the area into several.
Inner radius cylinder outer radius thickness of slice.
Solids of Revolution Disk Method
Volume: The Disc Method
Ch 7.3 Volumes Calculus Graphical, Numerical, Algebraic by
Applications of Integration Copyright © Cengage Learning. All rights reserved.
Volumes By Cylindrical Shells Objective: To develop another method to find volume without known cross-sections.
Volumes Using Cross-Sections Solids of Revolution Solids Solids not generated by Revolution Examples: Classify the solids.
7.1 Area of a Region Between Two Curves. Consider a very thin vertical strip. The length of the strip is: or Since the width of the strip is a very small.
Volumes Lesson 6.2.
Volume: The Shell Method
Disks, Washers and Shells Limerick Nuclear Generating Station, Pottstown, Pennsylvania.
Volumes by Slicing. disk Find the Volume of revolution using the disk method washer Find the volume of revolution using the washer method shell Find the.
Ch. 8 – Applications of Definite Integrals 8.3 – Volumes.
Chapter Area between Two Curves 7.2 Volumes by Slicing; Disks and Washers 7.3 Volumes by Cylindrical Shells 7.4 Length of a Plane Curve 7.5 Area.
Volumes by Cylindrical Shells. What is the volume of and y=0 revolved around about the y-axis ? - since its revolving about the y-axis, the equation needs.
Calculus April 13Volume: the Shell Method. Instead of cutting a cylinder into disks (think of cutting an onion into slices), we will look at layers of.
Disks, Washers and Shells Limerick Nuclear Generating Station, Pottstown, Pennsylvania Disk Method.
5.2 Volumes of Revolution: Disk and Washer Methods 1 We learned how to find the area under a curve. Now, given a curve, we form a 3-dimensional object:
6.3 Volumes by Cylindrical Shells. Find the volume of the solid obtained by rotating the region bounded,, and about the y -axis. We can use the washer.
C.2.5b – Volumes of Revolution – Method of Cylinders Calculus – Santowski 6/12/20161Calculus - Santowski.
Volume: The Shell Method
Warmup.
Solids of Revolution Shell Method
Solids of Revolution Shell Method
Shell Method for Volumes
The Shell Method Section 7.3.
Volumes © James Taylor 2000 Dove Presentations.
Volumes of Revolution The Shell Method
Volume: The Shell Method
Volumes of Solids of Revolution
6.2a DISKS METHOD (SOLIDS OF REVOLUTION)
Area & Volume Chapter 6.1 & 6.2 February 20, 2007.
Volumes of Revolution The Shell Method
6.1 Areas Between Curves To find the area:
Volumes by Cylindrical Shells Rita Korsunsky.
Presentation transcript:

Volume of Revolution, Shell Method A flat sheet of plastic is of length L, width W and thickness dx What is the volume of this sheet? L The volume dV of the sheet is: L dV = L W dx This sheet is rolled into a hollow cylinder of height L and radius r W This is called a shell. The width W of the sheet has now become the circumference of a circle of radius r The circumference C of a circle of radius r is r C = 2r

The volume dV of the sheet is: r dV = L W dx C = 2r Since W has become C, the volume dV of the shell can be written as: L L dV = L 2r dx W If L and r are functions of x then dV is: dV = 2 L(x)r(x) dx If L and r are functions of y then dV is: dV = 2 L(y)r(y) dy

Revolution on the y-axis Consider the graph of a function f(x) The area enclosed by this graph with the x-axis from x = a to x = b is shaded. f(x) We will use the shell method to find the volume generated when this area is revolved about the x-axis. L dA L(x) = f(x) dx Take a strip of area dA of width dx parallel to the y-axis x = a x = b Take note: For shell method, dA is taken parallel to the axis of revolution. What is the length of this area strip? Length of the strip = upper function – lower function. = f(x) – 0 = f(x) L(x) = f(x)

If this area is revolved about the y-axis, a shell is generated. What is the radius of this shell? Radius of the shell is the distance of dA from the axis of revolution. f(x) L dA The distance of dA from the y-axis is x L(x) = f(x) The radius of the shell is: r(x) = x dx x = a x = b The length of the shell is: L(x) = f(x) The volume dV of the shell is: dV = 2 L(x)r(x) dx The volume V generated by revolving the area from x = a to x = b is:

Revolution on the x-axis In order to revolve this area about the x-axis, dA of width dy is taken parallel to the x-axis g(y) f(y) L To find the length of dA, the functions must of y dy dA y y L(y) = f(y) – g(y) f(y) is on the right of dA and g(y) on its left. The length of dA is L(y) = f(y) – g(y) When dA is revolved about the x-axis, a shell is generated The radius r(y) of the shell is the distance of dA from the axis of revolution. The distance of dA from the x-axis is y r(y) = y

The volume dV of the shell generated is: f(y) L(y) = f(y) – g(y) r(y) = y y = d The volume dV of the shell generated is: f(y) L dy dV = 2 r(y)L(y) dy dA y L(y) = f(y) – g(y) y = c The volume V generated by revolving the area from y = c to y = d is:

1. Take dA parallel to the axis To use shell method to obtain the volume of revolution, we use the following steps 1. Take dA parallel to the axis 2. Obtain the length of dA L If dA is vertical, L(x) = g(x) – f(x) = Function above – function below If dA is horizontal, L(y) = g(y) – f(y) = right function – left function 3. Obtain the radius of revolution Radius r(x) or r(y) is the distance of dA from the axis of revolution. 3. Use the appropriate formula to obtain V

Draw the graphs of y = x2, y = 0, x = 4 and shade the area enclosed. Use the shell method to find the volume of revolution of the area enclosed by y = x2, y = 0 and x = 4 about the y axis. Draw the graphs of y = x2, y = 0, x = 4 and shade the area enclosed. y = x2 To revolve this area about the y-axis, take dA parallel to it. The length of dA is: L(x) = x2 – 0 = x2 x = 4 When dA is revolved about the y-axis, the radius of the shell generated is the distance of dA from y-axis. dA x2 y = 0 dx r(x) = x x The volume dV of the shell is: dx x dV = 2 r(x)L(x) dx L(x) = x2 = 2 x · x2 dx = 2 x3 dx

The position of dA can change from x = 0 to x = 4 dV= 2 x3 dx The position of dA can change from x = 0 to x = 4 y = x2 The volume V generated by revolving the area enclosed about the y-axis is: x = 4 dA x2 y = 0 dx x dx x L(x) = x2

Take dA of width dy parallel to the x-axis. Use the shell method to find the area of revolution of the area enclosed by y = x2, y = 0 and x = 4 about the x axis. Take dA of width dy parallel to the x-axis. Express the functions to the left and right of dA as functions of y y = x2 The function on the left is: y = x2 x = 4 Solving for x gives: dy dA y The function on the right is: x = 4 y = 0 g(y) = 4 The length of dA is: L(y) = g(y) – f(y) The radius of revolution is the distance of dA from the x-axis r(y) = y

The position of dA varies from y = 0 to y = 16 r(y) = y To find the limits, we find the points of intersection of x = y and x = 4 y = 16 y = x2 y = 4 gives: y = 16 The position of dA varies from y = 0 to y = 16 x = 4 dy The volume of revolution is: dA y y = 0

y = 16 y = x2 x = 4 dy dA y y = 0

Use the shell method to find the volume of revolution of the area enclosed by y = 2x, x = 0 and y = 4 about the y axis. x = 0 y = 2x Draw the graphs of y = 2x, x = 0, y = 4 and shade the area enclosed. y = 4 dx Take dA of width dx parallel to the y-axis The length of dA is: L(x) = 4 – 2x 4 – 2x r(x) = x Obtain limits by solving 2x = 4 x = 2 x The volume of revolution V is: x = 2

x = 0 y = 2x y = 4 dx 4 – 2x x x = 2

Find the volume generated by revolving the area enclosed by y = x2 and y = 4x – x2 about the line x = 2 x = 2 Draw the graphs of y = x2, y = 4x – x2 and x = 2 and shade the area enclosed. 2 y = x2 Find the points of intersection of y = x2 and y = 4x – x2. x 4x – x2 = x2 y = 4x – x2 2 – x 4x – x2 – x2 = 0 2x(2 – x) = 0 x = 0, 2 dx Take dA of width dx parallel to x = 2 x = 0 x = 2 The length of dA is: L(x) = 4x – x2 – x2 = 4x –2x2 The distance of dA from x = 2 is: 2 – x r(x) = 2 – x

L(x) = 4x – 2x2 r(x) = 2 – x x = 2 The volume of revolution V is: 2 y = x2 x y = 4x – x2 2 – x dx x = 0 x = 2

x = 2 2 y = x2 x y = 4x – x2 2 – x dx x = 0 x = 2

Draw dA of width dy parallel to the x-axis. x = 2 – y Use the shell method to find the volume of the solid generated by revolving the region bounded by y = 2 – x, y = 0 and x = 4 about the x-axis. y = 2 – x Draw the graphs of y = 2 – x , y = 0 and x = 4 and shade the area enclosed. y = 0 – y dA dy Draw dA of width dy parallel to the x-axis. x = 2 – y In order to find the length of dA, we need to write the functions on the left and right of dA as functions of y 4 x = 4 y = 2 – x Solving for x gives: x = 2 – y L(y) = 4 – (2 – y) L(y) = 2 + y dA is below the x-axis. The distance of dA from the x-axis is: – y r(y) = – y

To find the limits, solve 2 – y = 4 L(y) = 2 + y r(y) = – y y = 2x To find the limits, solve 2 – y = 4 y = -2 y = 0 – y The volume of revolution V is: dA dy 2 – y y = -2 4 x = 4

y = 2x y = 0 – y dA dy 2 – y y = -2 4 x = 4