Technische Universität München Fakultät für Informatik Computer Graphics SS 2014 Sampling Rüdiger Westermann Lehrstuhl für Computer Graphik und Visualisierung.

Slides:



Advertisements
Similar presentations
Adders Used to perform addition, subtraction, multiplication, and division (sometimes) Half-adder adds rightmost (least significant) bit Full-adder.
Advertisements

1
1 Vorlesung Informatik 2 Algorithmen und Datenstrukturen (Parallel Algorithms) Robin Pomplun.
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Chapter 1 The Study of Body Function Image PowerPoint
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 6 Author: Julia Richards and R. Scott Hawley.
Author: Julia Richards and R. Scott Hawley
1 Copyright © 2013 Elsevier Inc. All rights reserved. Chapter 3 CPUs.
Properties Use, share, or modify this drill on mathematic properties. There is too much material for a single class, so you’ll have to select for your.
Objectives: Generate and describe sequences. Vocabulary:
UNITED NATIONS Shipment Details Report – January 2006.
Spectral Analysis of Function Composition and Its Implications for Sampling in Direct Volume Visualization Steven Bergner GrUVi-Lab/SFU Torsten Möller.
Comparative Visualization for Wave-based and Geometric Acoustics Eduard Deines 1, Martin Bertram 3, Jan Mohring 4, Jevgenij Jegorovs 4, Frank Michel 1,
Business Transaction Management Software for Application Coordination 1 Business Processes and Coordination. Introduction to the Business.
1 RA I Sub-Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Casablanca, Morocco, 20 – 22 December 2005 Status of observing programmes in RA I.
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Properties of Real Numbers CommutativeAssociativeDistributive Identity + × Inverse + ×
Multiplying binomials You will have 20 seconds to answer each of the following multiplication problems. If you get hung up, go to the next problem when.
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
Environmental Remote Sensing GEOG 2021
Sampling, Aliasing.
GR2 Advanced Computer Graphics AGR
SI23 Introduction to Computer Graphics
16.1 Si23_03 SI23 Introduction to Computer Graphics Lecture 16 – Some Special Rendering Effects.
7.1 si31_2001 SI31 Advanced Computer Graphics AGR Lecture 7 Polygon Shading Techniques.
Solve Multi-step Equations
REVIEW: Arthropod ID. 1. Name the subphylum. 2. Name the subphylum. 3. Name the order.
Break Time Remaining 10:00.
PP Test Review Sections 6-1 to 6-6
EU market situation for eggs and poultry Management Committee 20 October 2011.
Bright Futures Guidelines Priorities and Screening Tables
Bellwork Do the following problem on a ½ sheet of paper and turn in.
Exarte Bezoek aan de Mediacampus Bachelor in de grafische en digitale media April 2014.
Copyright © 2012, Elsevier Inc. All rights Reserved. 1 Chapter 7 Modeling Structure with Blocks.
1 RA III - Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Buenos Aires, Argentina, 25 – 27 October 2006 Status of observing programmes in RA.
Factor P 16 8(8-5ab) 4(d² + 4) 3rs(2r – s) 15cd(1 + 2cd) 8(4a² + 3b²)
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
1..
Computer Graphics An Introduction. What’s this course all about? 05/10/2014 Lecture 1 2 We will cover… Graphics programming and algorithms Graphics data.
CONTROL VISION Set-up. Step 1 Step 2 Step 3 Step 5 Step 4.
© 2012 National Heart Foundation of Australia. Slide 2.
Adding Up In Chunks.
Universität Kaiserslautern Institut für Technologie und Arbeit / Institute of Technology and Work 1 Q16) Willingness to participate in a follow-up case.
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt Synthetic.
Note to the teacher: Was 28. A. to B. you C. said D. on Note to the teacher: Make this slide correct answer be C and sound to be “said”. to said you on.
Model and Relationships 6 M 1 M M M M M M M M M M M M M M M M
Analyzing Genes and Genomes
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
Essential Cell Biology
Intracellular Compartments and Transport
PSSA Preparation.
Essential Cell Biology
Immunobiology: The Immune System in Health & Disease Sixth Edition
Energy Generation in Mitochondria and Chlorplasts
Murach’s OS/390 and z/OS JCLChapter 16, Slide 1 © 2002, Mike Murach & Associates, Inc.
Technische Universität München Computer Graphics SS 2014 Graphics Effects Rüdiger Westermann Lehrstuhl für Computer Graphik und Visualisierung.
Technische Universität München Fakultät für Informatik Computer Graphics SS 2014 Transformations Rüdiger Westermann Lehrstuhl für Computer Graphik und.
Computer Graphics Viewing, Rendering, Antialiasing گرد آوري و تاليف: دكتر احمد رضا نقش نيل چي دانشگاه اصفهان گروه مهندسي كامپيوتر.
David Luebke1/19/99 CS 551/651: Antialiasing David Luebke
MIT EECS 6.837, Durand and Cutler Sampling, Aliasing, & Mipmaps.
CS 551 / CS 645 Antialiasing. What is a pixel? A pixel is not… –A box –A disk –A teeny tiny little light A pixel is a point –It has no dimension –It occupies.
Sampling, Aliasing, & Mipmaps
CIS 681 Distributed Ray Tracing. CIS 681 Anti-Aliasing Graphics as signal processing –Scene description: continuous signal –Sample –digital representation.
© Chun-Fa Chang Sampling Theorem & Antialiasing. © Chun-Fa Chang Motivations “ My ray traced images have a lot more pixels than the TV screen. Why do.
Computer Graphics Inf4/MSc Computer Graphics Lecture 9 Antialiasing, Texture Mapping.
MIT EECS Sampling, Aliasing, & Mipmaps. MIT EECS Last Time? Global illumination “physically accurate light transport” The rendering equation.
Antialiasing. What is alias? Alias - A false signal in telecommunication links from beats between signal frequency and sampling frequency (from dictionary.com)
Sampling Theorem & Antialiasing
Advanced Computer Graphics:
Presentation transcript:

Technische Universität München Fakultät für Informatik Computer Graphics SS 2014 Sampling Rüdiger Westermann Lehrstuhl für Computer Graphik und Visualisierung

Technische Universität München Computer Graphics Overview So far: –Image synthesis Ray tracing; models, transformations, shading & lighting, textures, acceleration Today –Aliasing and antialiasing techniques Prefiltering Supersampling Postfiltering Stochastic and adaptive sampling 2

Technische Universität München Computer Graphics Sampling Mathematically, point sampling using regularly spaced sample points is the multiplication of the function with a comb function 3 0 x T2T

Technische Universität München Computer Graphics Sampling Recall: image synthesis means point sampling of a continuous signal –Image contains samples of a continuous signal at a discrete set of positions –Pixel spacing determines the frequencies (the size of details) that can be reconstructed –Undersampling the image (taking too less samples to allow for the reconstruction of the signal from the samples) causes aliasing artifacts (alias = ghost) 4

Technische Universität München Computer Graphics Aliasing Original scene and luminosity (brightness) distribution along a scan line 5 5

Technische Universität München Computer Graphics Aliasing Point sampling the scene at pixel centers 6 6

Technische Universität München Computer Graphics Aliasing The rendered image 7 7

Technische Universität München Computer Graphics Aliasing Jagged profiles 8 8

Technische Universität München Computer Graphics Aliasing Loss of details 9 9

Technische Universität München Computer Graphics Aliasing Note: the sampling frequency decreases with increasing distance to the viewpoint 10 d0d1d2 d3 viewpoint

Technische Universität München Computer Graphics Aliasing With increasing distance to the viewer and slope of the surface, an ever larger surface area falls in-between adjacent rays 11

Technische Universität München Computer Graphics Aliasing Cause of aliasing –Sampling frequency is not high enough to cover all details –It is below the Niquist limit 12 Shannons Sampling Theorem: The signal has to be sampled at a frequency that is equal to or higher than two times the highest frequency in the signal

Technische Universität München Computer Graphics Aliasing Aliasing artefacts –Spatial aliasing –Temporal aliasing 13

Technische Universität München Computer Graphics Antialiasing How to avoid aliasing caused by an undersampling of the signal, i.e. the sampling frequency is not high enough to cover all details –Supersampling - increase sampling frequency –Prefiltering - decrease the highest frequency in the signal, i.e. filter the signal before sampling –Postfiltering – filtering after sampling, but just blurres the image 14

Technische Universität München Computer Graphics Antialiasing Supersampling - increase sampling frequency –Use more rays per pixel, i.e. virtually increase the resolution of the pixel raster –e.g. use 4x4 rays per pixel and compute average of all 16 colors as final pixel color –Sharp edges are washed out –OK, but doesn´t eliminate aliasing because sharp edges contain infinitely high frequencies 15

Technische Universität München Computer Graphics Antialiasing Supersampling –Regular supersampling 16

Technische Universität München Computer Graphics Antialiasing Filtering: average weighted samples 17

Technische Universität München Computer Graphics Antialiasing Filtering example 18

Technische Universität München Computer Graphics Antialiasing Filtering - jittered instead of regular sampling 19

Technische Universität München Computer Graphics Antialiasing Regular sampling –Visibility of aliases also caused by the regular sampling grid –Human visual system is sensitive against regular structures, but rather insensitive against high frequency noise Stochastic supersampling –Place samples randomly within pixel –Alias frequencies are converted to noise –But can result in clusters of sample 20

Technische Universität München Computer Graphics Antialiasing Poisson-disk sampling –Random generation of samples with limit for the minimum distance between samples Jittered sampling –Random jittering from regular grid points Stratified random sampling –Regular partitioning of pixel region –One random sample per partition 21

Technische Universität München Computer Graphics Antialiasing Comparison –Regular, 1x1 Regular 3x3 Regular, 7x7 Jittered, 3x3 Jittered, 7x7 22

Technische Universität München Computer Graphics Antialiasing Example: 23

Technische Universität München Computer Graphics Antialiasing Example: 24

Technische Universität München Computer Graphics Antialiasing Example: 25

Technische Universität München Computer Graphics Antialiasing Example: 26

Technische Universität München Computer Graphics Antialiasing Prefiltering –Antialiasing before sampling (mainly used in texture mapping) Filtering (smoothing) a signal to remove details below the frequency which is used to sample the signal 27

Technische Universität München Computer Graphics Antialiasing Prefiltering combines color contributions into a pixel 28

Technische Universität München Computer Graphics Antialiasing in texture mapping Many texels fall onto one pixels 29

Technische Universität München Computer Graphics Antialiasing in texture mapping Mip-Mapping: prefiltered levels of detail (LOD) in a pyramid At every level: average 2x2 texels from the finer level into one texel 30

Technische Universität München Computer Graphics Antialiasing in texture mapping 31

Technische Universität München Computer Graphics Antialiasing in texture mapping 32

Technische Universität München Computer Graphics Antialiasing in texture mapping Mip-Mapping: how does it work? –When a fragment is texture mapped, the mip-map level at which the texel size is equal to the pixel size is computed –From this level the texture is then sampled –It remains to be answered how the level is computed 33

Technische Universität München Computer Graphics Antialiasing in texture mapping We want to know what the size of one texel wrt the size of one pixel is – this allows estimating how many texels fall into one pixel 34

Technische Universität München Computer Graphics Antialiasing in texture mapping Computing the mip-map level: Check screen pixel “size” in texture coordinates 35 less than one texel per pixel we call this magnification more than one texel per pixel we call this minification u,v: fragments texture coordinates x,y: pixel coordinates

Technische Universität München Computer Graphics Antialiasing in texture mapping 36

Technische Universität München Computer Graphics Antialiasing in texture mapping 37 without MipMappingwith MipMapping

Technische Universität München Computer Graphics Antialiasing in texture mapping 38 Isotropic filtering (mipmapping) Anisotropic filtering

Technische Universität München Computer Graphics Antialiasing in texture mapping Mip-Mapping –The mip-map only stores a discrete set of levels –If pixel size matches texel size at a level in between, it is interpolated between the two adjacent levels 39 Sample 0 Sample 1 interpolate assign Select resolution Bilinear in texture + linear between levels = trilinear

Technische Universität München Computer Graphics Summary Quality of rendering strongly depends on antialiasing algorithms used –Typically, supersampling in combination with prefiltering is used Supersampling and mipmapping We are now ready to implement a high quality and efficient ray tracing algorithm What comes next is an alternative image synthesis approach based on the projection of geometry onto the image plane 40