SOLVING FOR THE MISSING PART OF AN OBLIQUE TRIANGLE

Slides:



Advertisements
Similar presentations
Law of Sines and Cosines
Advertisements

Law of Sines.
The Law of SINES.
The Law of Cosines February 25, 2010.
The Law of COSINES.
1316 Trigonometry Law of Sines Chapter 7 Sections 1&2
The Law of Sines and The Law of Cosines
The Law of Sines and The Law of Cosines
Module 8 Lesson 5 Oblique Triangles Florben G. Mendoza.
Math 112 Elementary Functions Section 1 The Law of Sines Chapter 7 – Applications of Trigonometry.
Math 112 Elementary Functions Section 2 The Law of Cosines Chapter 7 – Applications of Trigonometry.
Assignment Trig Ratios III Worksheets (Online) Challenge Problem: Find a formula for the area of a triangle given a, b, and.
Law of Cosines Trigonometry MATH 103 S. Rook. Overview Section 7.3 in the textbook: – Law of Cosines: SAS case – Law of Cosines: SSS case 2.
Copyright © 2009 Pearson Education, Inc. CHAPTER 8: Applications of Trigonometry 8.1The Law of Sines 8.2The Law of Cosines 8.3Complex Numbers: Trigonometric.
6.1 Law of Sines +Be able to apply law of sines to find missing sides and angles +Be able to determine ambiguous cases.
Law of Sines Digital Lesson. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 An oblique triangle is a triangle that has no right.
Laws of Sines. Introduction  In the last module we studied techniques for solving RIGHT triangles.  In this section and the next, you will solve OBLIQUE.
Law of Sines. Triangles Review Can the following side lengths be the side lengths of a triangle?
6.1 Law of Sines +Be able to apply law of sines to find missing sides and angles +Be able to determine ambiguous cases.
Chapter 5: Trigonometric Functions Lesson: Ambiguous Case in Solving Triangles Mrs. Parziale.
LAW OF SINES: THE AMBIGUOUS CASE. Review Identify if the given oblique triangle can be solved using the Law of Sines or the Law of Cosines 1. X = 21 0,
Law of Sines & Law of Cosines
Quiz 5-5 Solve for the missing angle and sides of Triangle ABC where B = 25º, b = 15, C = 107º Triangle ABC where B = 25º, b = 15, C = 107º 1. A = ? 2.
Digital Lesson Law of Sines.
The Law of Sines Section 6.1 Mr. Thompson. 2 An oblique triangle is a triangle that has no right angles. Definition: Oblique Triangles To solve an oblique.
Triangle Warm-up Can the following side lengths be the side lengths of a triangle?
1 Law of Cosines Digital Lesson. 2 Law of Cosines.
Trigonometry January 6, Section 8.1 ›In the previous chapters you have looked at solving right triangles. ›For this section you will solve oblique.
9.5 Apply the Law of Sines When can the law of sines be used to solve a triangle? How is the SSA case different from the AAS and ASA cases?
6.1 Law of Sines Objective To use Law of Sines to solve oblique triangles and to find the areas of oblique triangles.
5.5 Law of Sines. I. Law of Sines In any triangle with opposite sides a, b, and c: AB C b c a The Law of Sines is used to solve any triangle where you.
6.1 Law of Sines. Introduction Objective: Solve oblique triangles To solve: you must know the length of one side and the measures of any two other parts.
If none of the angles of a triangle is a right angle, the triangle is called oblique. All angles are acute Two acute angles, one obtuse angle.
Notes Over 8.1 Solving Oblique Triangles To solve an oblique triangle, you need to be given one side, and at least two other parts (sides or angles).
6.1 Law of Sines +Be able to apply law of sines to find missing sides and angles +Be able to determine ambiguous cases.
Math /7.2 – The Law of Sines 1. Q: We know how to solve right triangles using trig, but how can we use trig to solve any triangle? A: The Law of.
Lesson 6.5 Law of Cosines. Solving a Triangle using Law of Sines 2 The Law of Sines was good for: ASA- two angles and the included side AAS- two angles.
Section 4.2 – The Law of Sines. If none of the angles of a triangle is a right angle, the triangle is called oblique. An oblique triangle has either three.
Law of Sines AAS ONE SOLUTION SSA AMBIGUOUS CASE ASA ONE SOLUTION Domain error NO SOLUTION Second angle option violates triangle angle-sum theorem ONE.
Notes Over 8.2 Solving Oblique Triangles To solve an oblique triangle, you need to be given one side, and at least two other parts (sides or angles).
6.2 Law of Cosines *Be able to solve for a missing side or angle using law of cosines.
Sullivan Algebra and Trigonometry: Section 9.2 Objectives of this Section Solve SAA or ASA Triangles Solve SSA Triangles Solve Applied Problems.
Law of Sines Objective: To solve triangles that are not right triangles.
Law of Cosines Digital Lesson. Copyright © by Brooks/Cole, Cengage Learning. All rights reserved. 2 An oblique triangle is a triangle that has no right.
6.4 Law Of Sines. The law of sines is used to solve oblique triangles; triangles with no right angles. We will use capital letters to denote angles of.
FST Section 5.4.  Determine sin θ, cos θ, and tan θ.  Then, determine θ. θ
Law of Sines and Law of Cosines Digital Lesson. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 An oblique triangle is a triangle.
LAW of SINES.
Section T.5 – Solving Triangles
Oblique Triangles.
If none of the angles of a triangle is a right angle, the triangle is called oblique. All angles are acute Two acute angles, one obtuse angle.
Digital Lesson Law of Sines.
6.1 Law of Sines Objectives:
Objective: To apply the Law of Sines
Re:view Use the Law of Sines to solve: Solve ABC
Find the missing parts of each triangle.
Essential question: How do I solve oblique triangles?
Law of Sines.
Law of Sines What You will learn:
Essential question: How do I solve oblique triangles?
50 a 28.1o Warm-up: Find the altitude of the triangle.
Section 6.1.
Law of Sines and Cosines
Law of Sines Notes Over If ABC is a triangle with sides a, b, c, then according to the law of sines, or.
Section 6.2 The Law of Cosines
Section 6.2 The Law of Cosines
7.1, 7.2, 7.3 Law of Sines and Law of Cosines
7.2 The Law of Sines.
Law of Sines and Law of Cosines
The Law of Sines.
Presentation transcript:

SOLVING FOR THE MISSING PART OF AN OBLIQUE TRIANGLE LAW OF SINES SOLVING FOR THE MISSING PART OF AN OBLIQUE TRIANGLE

An oblique triangle is a triangle that has no right angles. C B A a b c To solve an oblique triangle, you need to know the measure of at least one side and the measures of any other two parts of the triangle – two sides, two angles, or one angle and one side.

The following cases are considered when solving oblique triangles. Two angles and any side (AAS or ASA) 2. Two sides and an angle opposite one of them (SSA) C c a a c b 3. Three sides (SSS) 3 c a B 4. Two sides and their included angle (SAS)

If ABC is an oblique triangle with sides a, b, and c, then The first two cases can be solved using the Law of Sines. (The last two cases can be solved using the Law of Cosines.) Law of Sines If ABC is an oblique triangle with sides a, b, and c, then C B A b h c a C B A b h c a Acute Triangle Obtuse Triangle

The Law of Sines Use when the given info is… ASA or AAS.

The Law of Sines Start by solving Solve ∆ABC if A = 42º, for the missing angle. Solve ∆ABC if A = 42º, b = 6.4, and C = 81º. B = 180º - 42º - 81º B = 57º

The Law of Sines Solve ∆ABC if A = 42º, b = 6.4, and C = 81º. Then solve for one of the missing sides.

The Law of Sines Solve ∆ABC if A = 42º, b = 6.4, and C = 81º. Finally solve for the remaining side.

Example (SSA): Use the Law of Sines to solve the triangle. A = 110°, a = 125 inches, b = 100 inches C B A b = 100 in c a = 125 in 110° 21.26° 48.74° 48.23 in C ≈ 180° – 110° – 48.74° = 21.26°

Use the Law of Sines to find side b and c. Example (ASA): Find the remaining angle and sides of the triangle. C B A b c 60° 10° a = 4.5 ft The third angle in the triangle is A = 180° – A – B = 180° – 10° – 60° = 110°. 4.15 ft 110° 0.83 ft Use the Law of Sines to find side b and c.

Now, you try some! Solve these triangles. A = 40° B = 20° a = 2 Always draw your triangle before you use the Sine Law Now, you try some! Solve these triangles. A = 40° B = 20° a = 2 A = 110° C = 30° c = 3 3) A = 30° b = 10 C = 50° 4) c = 2 A = 40° B = 40°