Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Ramon Costa Castelló Advanced Control of Energy.

Slides:



Advertisements
Similar presentations
Operational Amplifier Stability
Advertisements

ACTIVE POWER FILTER FOR POWER COMPENSATION
High Frequency Distortion in Power Grids due to Electronic Equipment Anders Larsson Luleå University of Technology.
António Pascoal 2011 Instituto Superior Tecnico Loop Shaping (SISO case) 0db.
SMPS - Switch Mode Power Supply
INVERTERS (DC-AC Converters).
A 2-day course on POWER ELECTRONICS AND APPLICATIONS (DC Motor Drives) Universiti Putra Malaysia August, 2004 Dr. Nik Rumzi Nik Idris Department.
Instructor:Po-Yu Kuo 教師:郭柏佑
M2-3 Buck Converter Objective is to answer the following questions: 1.How does a buck converter operate?
Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 181 Lecture 18 DSP-Based Analog Circuit Testing  Definitions  Unit Test Period (UTP)  Correlation.
Harmonic rejection strategies for grid converters
Harish Suryanarayana Doctoral Student Energy Sources and Systems Purdue University.
9.11. FLUX OBSERVERS FOR DIRECT VECTOR CONTROL WITH MOTION SENSORS
Digital Control of a Single-Phase Shunt Active Filter 34th IEEE Power Electronics Specialists Conference June 15-19, Acapulco R. Griñó, R. Costa-Castelló.
Electric Drives FEEDBACK LINEARIZED CONTROL Vector control was invented to produce separate flux and torque control as it is implicitely possible.
Figure 1.17 Model of an electronic amplifier, including input resistance Ri and output resistance Ro. © 2000 Prentice Hall Inc.
Design of a Control Workstation for Controller Algorithm Testing Aaron Mahaffey Dave Tastsides Dr. Dempsey.
I. Concepts and Tools Mathematics for Dynamic Systems Time Response
5.1 the frequency response of LTI system 5.2 system function 5.3 frequency response for rational system function 5.4 relationship between magnitude and.
OSCILLATORS.
POWER SUPPILES LECTURE 20.
1 Basic Control Theory and Its Application in AMB Systems Zongli Lin University of Virginia.
Sigma Delta A/D Converter SamplerModulator Decimation Filter x(t) x[n]y[n] Analog Digital fsfs fsfs 2 f o 16 bits e[n] Over Sampling Ratio = 2f o is Nyquist.
Ch7 Operational Amplifiers and Op Amp Circuits
Parul Poltehynic Institute Subject Code : Name Of Subject : Basic Electronics Name of Unit : Ch-3 Oscillator’s Topic : Oscillator’s Name of Faculty.
EKT314/4 Electronic Instrumentation
OSCILLATORS.
Switching DC Power Supplies
EKT314/4 Electronic Instrumentation
Odd-Harmonic Digital Repetitive Control and its application to Active filters control NTU Nayang, February 15h 2006 Ramon Costa Castelló Advanced Control.
D ESIGN AND I MPLEMENTATION OF THE D IGITAL C ONTROLLER FOR A F UEL C ELL DC-DC P OWER C ONVERTER SYSTEM O.A. A HMED, J.A.M. B LEIJS.
Course Outline Ideal Meters and Ideal Sources. Circuit Theory: DC and AC. Linear Circuit Components that obey Ohm’s Law: R, L, and C. Transient Response.
Dynamic analysis of switching converters
A Shaft Sensorless Control for PMSM Using Direct Neural Network Adaptive Observer Authors: Guo Qingding Luo Ruifu Wang Limei IEEE IECON 22 nd International.
Sliding Mode Control for Half-Wave Zero Current Switching Quasi-Resonant Buck Converter M. Ahmed,Student member IEEE, M. Kuisma, P. Silventoinen Lappeenranta.
Lecture # 12&13 SWITCHING-MODE POWER SUPPLIES
1 Power Electronics by Dr. Carsten Nesgaard Small-signal converter modeling and frequency dependant behavior in controller synthesis.
Prof R T KennedyPOWER ELECTRONICS 21. Prof R T KennedyPOWER ELECTRONICS 22 Class D audio amplifiers switching - PWM amplifiers -V cc.
Ch. 9 Application to Control. 9.1 Introduction to Control Consider a causal linear time-invariant system with input x(t) and output y(t). Y(s) = Gp(s)X(s)
Electrical Engineering 348: ELECTRONIC CIRCUITS I Dr. John Choma, Jr. Professor of Electrical Engineering University of Southern California Department.
Odd-Harmonic Digital Repetitive Control and its application to Active filters control URV Tarragona, May 25th 2007 Odd-Harmonic Digital Repetitive Control.
Lecture 25: Implementation Complicating factors Control design without a model Implementation of control algorithms ME 431, Lecture 25.
Transform Analysis of LTI Systems Quote of the Day Any sufficiently advanced technology is indistinguishable from magic. Arthur C. Clarke Content and Figures.
OSCILLATORS Dr.S.SUJA Associate Professor
Page 1 國立交通大學電力電子晶片設計與 DSP 控制實驗室 Power Electronics IC Design & DSP Control Lab., NCTU, Taiwan 年 10 月 13 日 賴 逸 軒賴 逸.
Disturbance rejection control method
CLOSED LOOP SPEED CONTROL OF DC MOTOR WITH PWM TECHNIQUE
PRESENTED BY SUDHEESH.S PS-B-12. CONTENTS  INDTRODUCTION  WIND POWER EXTRACTION WITH BATTERIES  CONTROL SCHEME  SYSTEM PERFORMANCE  RESULTS  CONCLUSION.
A DSP Based On-line UPS. Role of UPS in daily life: As an auxiliary power source in case of line outage, particularly useful to sensitive loads. Maintains.
J.PRAKASH.  The term power quality means different things to different people.  Power quality is the interaction of electronic equipment within the.
Ch7 Operational Amplifiers and Op Amp Circuits
DOUBLE INPUT Z-SOURCE DC-DC CONVERTER
Oscillator.
DOUBLE INPUT Z-SOURCE DC-DC CONVERTER
Introduction to Electronics
Control Systems EE 4314 Lecture 12 March 17, 2015
Harmonics Reduction in 3-Phase, 3-Wire Distribution System with 5 level Shunt Active Filter
Switching DC Power Supplies
DOUBLE INPUT Z-SOURCE DC-DC CONVERTER
AC Inlet & AC Input Filter
Converter principles and modelling
Multi-Pulse Voltage Source Converters for HVDC Systems
Islamic University of Gaza Faculty of Engineering
Instituto Superior Tecnico
Microelectronics.
Digital Control Systems (DCS)
ECE 3336 Introduction to Circuits & Electronics
Hafez Sarkawi (D1) Control System Theory Lab
Chris Leonard and Baylor Howard Advisor: Dr. Jing Wang
POWER ELECTRONICS DC-AC CONVERTERS (INVERTERS) PART 1
Presentation transcript:

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Ramon Costa Castelló Advanced Control of Energy Systems (ACES) Instituto de Organización y Control (IOC) Universitat Politècnica de Catalunya (UPC) Barcelona, Spain Repetitive control : Power Electronics Applications

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Contents Repetitive Control Basics –Introduction –Periodic Signals –Performance –Discrete Time –The Odd-Harmonic case –Control Scheme Cascade Approach Plug-in Approach The active filter application –Introduction –Basic Concept –Architecture –Control Problem –Experimental Setup –Experimental Results

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Introduction A key topic in classical control theory is the Internal Model Principle (IMP). –B. Francis and W. Wonham, “Internal Model Principle in control theory,” Automatica, vol. 12, pp. 457–465, This principle states that if a certain signal must be tracked or rejected without steady-state error, the generator must be inside the control loop, in the controller, or in the plant itself.

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Introduction : Type Concept Standard classical control subjects include the IMP concept implicitly when they introduce the system-type concept. The type concept can only be applied to polynomial signals (step, ramp, and parabola) whose generator has the form in the Laplace domain.

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Introduction : Type Concept (II)

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Introduction : Systems with periodical disturbances or references In practice, many real systems have to handle tracking and rejecting periodic signals. Magnet power supply for a proton synchrotron (Nakano and others)

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Introduction : Systems with periodical disturbances or references (II) Demonstration of the Internal Model Principle by Digital Repetitive Control of an Educational Laboratory Plant. Ramon Costa- Castelló and Jordi Nebot and Robert Griñó.IEEE Transactions on Education. Vol. 48, No.1, Pages (February 2005). ISSN :

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Introduction : Power Electronics Inverter : Generating a 50/60 Hz signal from dc one (Tracking a reference signal) Active filter : Compensation of harmonic signals (Rejecting periodic signals)

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Periodical Signals Any periodical signal can be written as: The control loop should include:

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Periodical Signals : Generator Yamamoto, Y. (1993). Learning control and related problems in infinite- dimensional systems. In: Proceedings of the 1993 European Control Conference. pp

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Periodical Signals : Generator I

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Periodical Signals : Generator II +

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Periodical Signals : Generator III

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Performance C(s) P(s) Open Loop Transfer Function Sensitivity Function Complementary Sensitivity Function

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Digital Case

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Digital Case II +

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Odd-Harmonic Case Digital repetitive plug-in controller for odd-harmonic periodic references and disturbances Robert Griñó and Ramon Costa- Castelló. Automatica. Volume 41, Issue 1,Pages (January 2005)

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Odd-Harmonic Case II N=3 odd harmonic N=3 traditional

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Control Scheme Cascade form Plug-in Form

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Control Scheme : Cascade form P(z)

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Control Scheme : Plug-in Approach Repetitive Controller

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Control Scheme : Plug-in Approach II

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Control Scheme : Plug-in Approach III

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Plug-in Approach : Stability Conditions 1.First stability Condition : The System without the Repetitive Controller must be stable. 2.Second stability Condition 3.Third stability Condition :

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Plug-in Approach : Filter F(z) should fulfill the second stability condition. Usually, a low-pass null-phase FIR filter is used. To assure unitary gain a DC frequency the parameters must fulfill : No causality problems exist because that the filter is in cascade with a N periods delay. The filter reduces the open-loop gain at those frequencies at which uncertainty exists (robustness). Unfortunately it slightly moves the open-loop pole positions in z-plane (precision loose).

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Plug-in Approach : G x (z) A common approach to design G x (z) is Unfortunately, this approach cannot be applied to non- minimum-phase plants. Another approach is to cancel minimum-phase zeros and compensate the phase for the non minimum-phase ones: k r is fixed by a trade-off between robustness and transient response.

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Contents Repetitive Control Basics √ –Introduction –Periodic Signals –Performance –Discrete Time –The Odd-Harmonic case –Control Scheme Cascade Approach Plug-in Approach The active filter application –Introduction –Basic Concept –Architecture –Control Problem –Experimental Setup –Experimental Results

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Introduction Proliferation of nonlinear loads ->This fact has deteriorated the power quality of electrical power systems. More stringent requirements proposals IEC {2,4} and IEEE-519.

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Basic Concepts Linear Load Nonlinear Load Active Filter

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Architecture : Complete Picture Full Bridge Boost Converter

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Control Problem: Control Goals Current in phase with the voltage waveform: Constant average value of the voltage at the DC bus capacitor:

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Architecture : Boost Converter r L C r L C

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Architecture : Boost Converter II The averaged model

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Control Problem: Current Control loop ZOH, T

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Control Problem: Voltage Loop Current loop in steady state r=0

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Control Problem: Voltage Loop PI

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Control Problem: Proposed Scheme Two control loops : –Current loop : Digital Repetitive Control –Voltage loop : Classical PI Control Boost Converter Repetitive Controller PI Controller Odd-Harmonic Digital Repetitive Control of a Single-Phase Current Active Filter. Ramon Costa-Castelló, Robert Griñó & Enric Fossas IEEE Transactions on Power Electronics. Volume: 19, Issue: 4, Year: July E.Page(s):

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Experimental Setup Active filter parameters: –Capacitor: 6600 uF, 450 V DC –Inductor: 0.8 mH –parasitic resistance: 0.04 Ohm –IGBT: 1200 V, 100 A Feedback paths (sensors): –Network voltage: voltage transformer (220V/15V) –Network current: Hall-effect sensor (TECSA-HA ) (50A) –DC bus voltage: AD-215BY isolation amplifier Control hardware: –ADSP floating-point DSP –ADMC-200 coprocessor: A/D channels and PWM generation

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Experimental Setup : General view

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Experimental setup : IGBT drivers

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Experimental setup : Control hardware

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Experimental Results: Nonlinear Load

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Experimental Results: No-Load

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Experimental Results: Full NL load

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Experimental Results: Full NL load

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Experimental Results: Full load to No-load

Repetitive Control: Power Electronics Applications. Jornadas de Ingeniería de Control Zaragoza Mayo 2005 Experimental Results: No-load to full load