Semantic Web Motivating Example. A Motivating example Here’s a motivating example, adapted from a presentation by Ivan Herman It introduces semantic web.

Slides:



Advertisements
Similar presentations
Maritime Knowledge Base Semantic Application Semantic Exchange Workshop February 17th, 2009 Eric Freese Semantic Web, XML & Geospatial Technologist Copyright.
Advertisements

MILAN STANKOVIC 1,2 & PHILIPPE LAUBLET 1 1 STIH – UNIVERSITÉ PARIS-SORBONNE 2 HYPIOS Linked Data : Exposing your data on the Web.
EndNote Web Reference Management Software (module 5.1)
EndNote Web Reference Management Software (module 5)
Last update: (2) (3) The Dutch airline.
Deutsche Gesellschaft für Informationswissenschaft und Informationspraxis e.V. 1. DGI-Konferenz, 62. DGI Jahrestagung Semantic Web & Linked Data Elemente.
Introduction to Semantic Web and RDF RDF, Linked Data workshop at DANS The Hague, 28 th July, 2010, Ivan Herman, W3C.
12-CRS-0106 REVISED 8 FEB 2013 PRESENTS vTools Voting: Getting Voter List.
Cambridge Semantic Web Gathering , Cambridge, MA, USA Ivan Herman W3C, Semantic Web Activity Lead.
12/03/ Second International Workshop on New Generation Enterprise and Business Innovation NGEBIS 2013 Cross Domain Crawling for Innovation Pieruigi.
1 Introduction to KR and Semantic Web Many slides are based on tutorial by Ivan Herman (W3C) reproduced here with kind permission. Additionally, many of.
The 20th International Conference on Software Engineering and Knowledge Engineering (SEKE2008) Department of Electrical and Computer Engineering
1 ARIN – KR Practical 1, Part 2 RDF Some of these slides are based on tutorial by Ivan Herman (W3C) reproduced here with kind permission. All changes and.
Creating Linked Data Juan F. Sequeda Semantic Technology Conference June 2011.
1 An inference engine for the semantic web Naudts Guido Student at the Open University Netherlands.
“Facts are stubborn things, but statistics are pliable.”
Efficient Controllability Analysis of Open Nets Workshop on Web Services and Formal Methods 2008 Daniela Weinberg
Processing of structured documents Part 8. 2 Resource Description Framework (RDF) zWeb was originally built for human consumption yalthough everything.
Semantic Web Thanks to folks at LAIT lab Sources include :
RDFa: Embedding RDF Knowledge in HTML Some content from a presentation by Ivan Herman of the W3c, Introduction to RDFa, given at the 2011 Semantic Technologies.
OCLC Research TAI CHI Webinar 5/27/2010 A Gentle Introduction to Linked Data Ralph LeVan Sr. Research Scientist OCLC Research.
By Ahmet Can Babaoğlu Abdurrahman Beşinci.  Suppose you want to buy a Star wars DVD having such properties;  wide-screen ( not full-screen )  the extra.
RDF Tutorial.
Semantic Web Introduction
Linked Data for Libraries, Archives, Museums. Learning objectives Define the concept of linked data State 3 benefits of creating linked data and making.
SW-S TORE : A VERTICALLY PARTITIONED DBMS FOR S EMANTIC W EB DATA M ANAGEMENT Surabhi Mithal Nipun Garg Daniel J. Abadi, Adam Marcus, Samuel R. Madden,
SW-S TORE : A VERTICALLY PARTITIONED DBMS FOR S EMANTIC W EB DATA M ANAGEMENT Surabhi Mithal Nipun Garg.
Xyleme A Dynamic Warehouse for XML Data of the Web.
RDF: Building Block for the Semantic Web Jim Ellenberger UCCS CS5260 Spring 2011.
Ivan Herman, W3C, “Semantic Café”, organized by the W3C Brazil Office São Paulo, Brazil,
Semantic Web outlook and trends May The Past 24 Odd Years 1984 Lenat’s Cyc vision 1989 TBL’s Web vision 1991 DARPA Knowledge Sharing Effort 1996.
Michalis Vafopoulos NTUA, GFOSS & The transformers GREEN CITY HACKATHON.
1 The BT Digital Library A case study in intelligent content management Paul Warren
Entity Recognition via Querying DBpedia ElShaimaa Ali.
Author: William Tunstall-Pedoe Presenter: Bahareh Sarrafzadeh CS 886 Spring 2015.
-1- Philipp Heim, Thomas Ertl, Jürgen Ziegler Facet Graphs: Complex Semantic Querying Made Easy Philipp Heim 1, Thomas Ertl 1 and Jürgen Ziegler 2 1 Visualization.
Provenance Analytics and Crowdsourcing Trung Dong Huynh Web and Internet Science Research Group Cybercrime Workshop.
Learning Patterns on the World Wide Web Andrew Hogue Advisor: David Karger October 17, 2003.
Information Interchange on the Semantic Web an interactive talk by Piotr Kaminski, University of Victoria
Semantic Web - an introduction By Daniel Wu (danielwujr)
Individualized Knowledge Access David Karger Lynn Andrea Stein Mark Ackerman Ralph Swick.
1 Tutorial on the Semantic Web (Last update: 26 May 2009) adapted from (C) Ivan Herman, W3C Given at WE course by Peter Dolog Adapted: October 2010.
Towards the Semantic Web 6 Generating Ontologies for the Semantic Web: OntoBuilder R.H.P. Engles and T.Ch.Lech 이 은 정
1 Context-Aware Internet Sharma Chakravarthy UT Arlington December 19, 2008.
Shridhar Bhalerao CMSC 601 Finding Implicit Relations in the Semantic Web.
Semantic Web Presented by Xia Li. 2 Outline Introduction Examples Semantic Web technologies Applications Concerns.
Semantic Web COMS 6135 Class Presentation Jian Pan Department of Computer Science Columbia University Web Enhanced Information Management.
A Portrait of the Semantic Web in Action Jeff Heflin and James Hendler IEEE Intelligent Systems December 6, 2010 Hyewon Lim.
Title Page The title page is the first page in the book. It tells you the title of the book, the author and the illustrator. It also tells you who published.
Semantic Data Extraction for B2B Integration Syntactic-to-Semantic Middleware Bruno Silva 1, Jorge Cardoso 2 1 2
GoRelations: an Intuitive Query System for DBPedia Lushan Han and Tim Finin 15 November 2011
What is the Semantic Web? 17 th XBRL International Conference Eindhoven, the Netherlands 5 st May, 2008 Ivan Herman, W3C.
PAIR project progress report Yi-Ting Chou Shui-Lung Chuang Xuanhui Wang.
Shared innovation Linking Distributed Data across the Web Dr Tom Heath Researcher, Platform Division Talis Information Ltd t
Master Informatique 1 Semantic Web Technologies Part 0Course Organization Semantic Web Technologies Werner Nutt.
Introduction to the Semantic Web (through an Example…) Ivan Herman, W3C (Last updated: 11 November 2009)
Introduction to the Semantic Web Ivan Herman, W3C ESA, Noordwijk, the Netherlands 16 th April, 2007 Ivan Herman.
Overview of the Semantic Web Ralph R. Swick World Wide Web Consortium (W3C) 17 October 2009.
OWL (Ontology Web Language and Applications) Maw-Sheng Horng Department of Mathematics and Information Education National Taipei University of Education.
Tutorial on Semantic Web
Tutorial on Semantic Web
RDF and RDB 1 Some slides adapted from a presentation by Ivan Herman at the Semantic Technology & Business Conference, 2012.
Materi Minggu ke 11 Introduction to the Semantic Web
Introduction to the Semantic Web (tutorial) 2009 Semantic Technology Conference San Jose, California, USA June 15, 2009 Ivan Herman, W3C
Tutorial on Semantic Web
How does the Semantic Web Work?
Overview of the Semantic Web Ralph R
Web IR: Recent Trends; Future of Web Search
The parts of a scholarly book
Linked Data Ryan McAlister.
Presentation transcript:

Semantic Web Motivating Example

A Motivating example Here’s a motivating example, adapted from a presentation by Ivan Herman It introduces semantic web concepts and illustrates the benefits of representing your data using the semantic web techniques And motivates some of the semantic web technologies

We start with a book...

A simplified bookstore data IDAuthorTitlePublisherYear ISBN Xid_xyzThe Glass Palaceid_qpr2000 IDNameHomepage id_xyzGhosh, Amitavhttp:// IDPublisher’s nameCity id_qprHarper CollinsLondon

Export data as a set of relations Ghosh, Amitav The Glass Palace 2000 London Harper Collins a:title a:year a:city a:p_name a:name a:homepage a:author a:publisher

Notes on exporting the data Relations form a graph – Nodes refer to “real” data or some literal – We’ll defer dealing with the Graph representation Data export doesn’t necessarily mean physical conversion of the data – relations can be generated on-the-fly at query time All of the data need not be exported

Same book in French…

Bookstore data (dataset “F”) ABCD 1 IDTitreTraducteurOriginal 2 ISBN Le Palais des Miroirs$A12$ISBN X IDAuteur 7 ISBN X$A11$ Nom 11 Ghosh, Amitav 12 Besse, Christianne

Export data as a set of relations Ghosh, Amitav Besse, Christianne Le palais des miroirs f:original f:nom f:traducteur f:auteur f:titre f:nom

Start merging your data Ghosh, Amitav Besse, Christianne Le palais des miroirs f:original f:nom f:traducteur f:auteur f:titre f:nom Ghosh, Amitav The Glass Palace 2000 London Harper Collins a:title a:year a:city a:p_name a:name a:homepage a:author a:publisher

Merging your data Ghosh, Amitav Besse, Christianne Le palais des miroirs f:original f:nom f:traducteur f:auteur f:titre f:nom Ghosh, Amitav The Glass Palace 2000 London Harper Collins a:title a:year a:city a:p_name a:name a:homepage a:author a:publisher Same URI!

Merging your data a:title Ghosh, Amitav Besse, Christianne Le palais des miroirs f:original f:no m f:traducteu r f:auteur f:titre f:nom Ghosh, Amitav The Glass Palace 2000 London Harper Collins a:yea r a:city a:p_name a:name a:homepage a:author a:publisher

Start making queries… User of data “F” can now ask aout the title of the original This information is not in the dataset “F”… …but can be retrieved by merging with dataset “A”!

However, more can be achieved… Maybe a:author & f:auteur should be the same But an automatic merge doesn’t know that! Add extra information to the merged data: – a:author same as f:auteur – both identify a “Person” – Where Person is a term that may have already been defined, e.g.: A “Person” is uniquely identified by a full name, a homepage, facebook page, G+ page or address It can be used as a “category” for certain type of resources

Use this extra knowledge Besse, Christianne Le palais des miroirs f:original f:nom f:traducteu r f:auteur f:titre f:nom Ghosh, Amitav The Glass Palace 2000 London Harper Collins a:title a:year a:city a:p_name a:name a:homepage a:author a:publisher r:type

This enables richer queries User of dataset “F” can now query: – “donnes-moi la page d’accueil de l’auteur de l’original” well… “give me the home page of the original’s ‘auteur’” The information is not in datasets “F” or “A”… …but was made available by: – Merging datasets “A” and datasets “F” – Adding three simple extra statements – Inferring the consequences

Combine with different datasets Using, e.g., the “Person”, the dataset can be combined with other sources For example, data in Wikipedia can be extracted using dedicated tools – e.g., the “dbpedia” project can extract the “infobox” information from Wikipedia already…dbpedia

Merge with Wikipedia data Besse, Christianne Le palais des miroirs f:original f:nom f:traducteu r f:auteur f:titre f:nom Ghosh, Amitav The Glass Palace 2000 London Harper Collins a:title a:year a:city a:p_name a:name a:homepage a:author a:publisher r:type r:type foaf:namew:reference

Merge with Wikipedia data Besse, Christianne Le palais des miroirs f:original f:nom f:traducteu r f:auteur f:titre f:nom Ghosh, Amitav The Glass Palace 2000 London Harper Collins a:title a:year a:city a:p_name a:name a:homepage a:author a:publisher r:type r:type foaf:namew:reference w:author_of w:isbn

Merge with Wikipedia data Besse, Christianne Le palais des miroirs f:original f:nom f:traducteu r f:auteur f:titre f:nom Ghosh, Amitav The Glass Palace 2000 London Harper Collins a:title a:year a:city a:p_name a:name a:homepage a:author a:publisher r:type r:type foaf:namew:reference w:author_of w:born_in w:isbn w:long w:lat

Is that surprising? It may look like it but, in fact, it should not be… What happened via automatic means is done every day by Web users! What is needed is a way to let machines decide when classes, properties and individuals are the same or different

This can be even more powerful Add extra knowledge to the merged datasets – e.g., a full classification of various types of library data – geographical information – etc. This is where ontologies, extra rules, etc., come in – ontologies/rule sets can be relatively simple and small, or huge, or anything in between… Even more powerful queries can be asked as a result

So where is the Semantic Web? The Semantic Web provides technologies to make such integration possible! Hopefully you get a full picture at the end of the tutorial…