AITA 9, MERTIS Team – MERTIS Calibration, Oct 2007 Folie 1 Development of a calibration concept for the MErcury Thermal Infrared Spectrometer Thomas Saeuberlich,

Slides:



Advertisements
Similar presentations
National Ozone Monitoring Research & Education Center, Belarus State University, Minsk, Belarus National Report of the Republic of Belarus for the 7th.
Advertisements

Spectrochemical Instrumentation Modules
1 st post launch SCIAMACHY calibration & Verification Meeting L1b Astrium Friedrichshafen – Germany 24 July 2002 First Level 1b Spectral Calibration analysis.
R2-29 report ppt/Bp © METAS - 1 maets metrology and accreditation switzerland R2-29 Characterization of imaging luminance measurement devices.
M3 Instrument Design and Expected Performance Robert O. Green 12 May 2005.
7. Beer’s Law and It’s Implications for Instrument Construction.
Clouds and the Earth’s Radiant Energy System NASA Langley Research Center / Atmospheric Sciences Methodology to compare GERB- CERES filtered radiances.
Pre-launch Characterization of the CERES Flight Model 5 (FM5) Instrument on NPP S. Thomas a, K. J. Priestley b, M. Shankar a, N. P. Smith a, M. G. Timcoe.
Results from the OMPS Nadir Instruments on Suomi NPP Satellite
Just how good is a L1 spectrum? An overview of SCIAMACHY calibration quality Ralph Snel, SSAG Calibration Subgroup and SQWG SADDU meeting June 16/17, 2008.
Remote sensing in meteorology
Applications Team Sensing Products
Modeling the imaging system Why? If a customer gives you specification of what they wish to see, in what environment the system should perform, you as.
Improving Uncertainties of Non-Contact Thermometry Measurements Mark Finch Fluke Calibration.
Rachel Klima (on behalf of the MASCS team) JHU/APL MASCS/VIRS Data Users’ Workshop LPSC 2014, The Woodlands, TX March 17,2014 MASCS Instrument & VIRS Calibration.
In-orbit calibration (TOTAL channel) V space -V IBB Raw Earth V (counts) Raw IBB V (counts) =
6-1 EE/Ge 157b Week 6 EE/Ae 157 a Passive Microwave Sensing.
Sergey Mekhontsev National Institute of Standards and Technology Optical Technology Division, Gaithersburg, MD Infrared Spectral Radiance Scale.
1/24 Optical Thermometry Haiqing Guo Dept. of Fire Protection Engineering Lab Methods Day June 25, 2014.
0. To first order, the instrument is working very well ! 1.Evolution of the IR detector with time 2.Stability of the L channel 3.Saturation 4.Linearity.
Remote Sensing Image Rectification and Restoration
D EDICATED S PECTROPHOTOMETER F OR L OCALIZED T RANSMITTANCE A ND R EFLECTANCE M EASUREMENTS Laetitia ABEL-TIBERINI, Frédéric LEMARQUIS, Michel LEQUIME.
Blue: Histogram of normalised deviation from “true” value; Red: Gaussian fit to histogram Presented at ESA Hyperspectral Workshop 2010, March 16-19, Frascati,
OMEGA GROUND CALIBRATION B. Gondet,Saint Louis, 21/05/2008.
Correlation between visual impression and instrumental colour determination for LEDs János Schanda Professor Emeritus of the University of Pannonia, Hungary.
Slide 1 Implementation of algorithmic correction of stray light in a pushbroom hyperspectral sensor > Karim Lenhard > Implementation of algorithmic.
1 An Observatory for Ocean, Climate and Environment SAC-D/Aquarius HSC - Radiometric Calibration H Raimondo M Marenchino 7th SAC-D Aquarius Science Meeting.
CDE CDR, September 14, 2004 Your Position, Your Name 1 GATS AIM Science Team Meeting January 23-24, 2007 CIPS Calibration Review, Aimee Merkel, Bill McClintock.
1 Leonardo Pinheiro da Silva Corot-Brazil Workshop – October 31, 2004 Corot Instrument Characterization based on in-flight collected data Leonardo Pinheiro.
Headwall Instrument Overview Laboratory Characterizations Geo-Location Field Characterization Data Product Description References.
Jörn Helbert Planetary Emissivity Laboratory Facing the heat – Obtaining near infrared real emissivity spectra at Venus surface temperatures.
Observational Astrophysics I
1 5-9 October th ICATPP, Como, Italy S. Maltezos NITROGEN MOLECULAR SPECTRA OF AIR FLUORESCENCE EMULATOR USING A LN 2 COOLED CCD S. Maltezos, E.
The Second TEMPO Science Team Meeting Physical Basis of the Near-UV Aerosol Algorithm Omar Torres NASA Goddard Space Flight Center Atmospheric Chemistry.
1 Reflected Solar Calibration Demonstration System - SOLARIS K. Thome, D. Jennings, B. McAndrew, J. McCorkel, P. Thompson NASA/GSFC.
SPACE TELESCOPE SCIENCE INSTITUTE Operated for NASA by AURA MIRI VM2 Testing Scott Friedman and the MIRI Test Team (special thanks to Paul Eccleston, Alistair.
PACS SVR 2 18 Jan 2007 FM ILT: Spectrometer1 Spectrometer Performance H. Feuchtgruber, T. Müller, A. Poglitsch.
Slide 1 NATO UNCLASSIFIEDMeeting title – Location - Date Satellite Inter-calibration of MODIS and VIIRS sensors Preliminary results A. Alvarez, G. Pennucci,
IRMA 20µm Water Vapour Radiometer Operations in the TMT Site Testing Campaign Richard Querel, David Naylor, Robin Phillips, Regan Dahl, & Brad Gom Astronomical.
A Method for Correcting for Telescope Spectral Transmission in the Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) John D. Elwell, Deron.
Experimenting from a distance: optical spectrometry via the Internet Lars-Jochen Thoms.
Kinetic Temperature Retrievals from MGS TES Bolometer Measurements: Current Status and Future Plans A.A. Kutepov, A.G. Feofilov, L.Rezac July 28, 2009,
BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERONOMIE SPATIALE DE BELGIQUE BELGIAN INSTITUTE OF SPACE AERONOMY BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE.
Remote Sensing Waves transport energy. According to quantum theory, light may be considered not only as an electro-magnetic wave but also as a "stream"
06 Oct 05Space Science & Technology Dept1 Solar Orbiter Consortium Meeting 03 Mar 06 Optical Design Of Solar Orbiter Normal Incidence Spectrometer KF Middleton.
Electro-optical systems Sensor Resolution
# x pixels Geometry # Detector elements Detector Element Sizes Array Size Detector Element Sizes # Detector elements Pictorial diagram showing detector.
BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERONOMIE SPATIALE DE BELGIQUE BELGIAN INSTITUTE FOR SPACE AERONOMY BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE.
Digital Imaging and Remote Sensing Laboratory thermal infrared data 1 Processing of TIMS data to emissivity spectra TIMS bands for this analysis 8.407,
A. Ealet Berkeley, december Spectrograph calibration Determination of specifications Calibration strategy Note in
Thomas C. Stone U.S. Geological Survey, Flagstaff, AZ USA GSICS Research Working Group Meeting EUMETSAT 24−28 March 2014 Using the Moon as a Radiometric.
GERB Ground Calibration Overview and Status J. Rufus
Pre-launch Characteristics and Calibration
NOAA VIIRS Team GIRO Implementation Updates
Lunar observation data set preparation
V2.0 minus V2.5 RSAS Tangent Height Difference Orbit 3761
TEMPO Instrument Update
OMEGA GROUND CALIBRATION
MODIS Lunar Calibration Data Preparation and Results for GIRO Testing
Instrument Characterization: Status
GIFTS System Calibration Requirements Flowdown
Instrument Considerations
Status of Equatorial CXRS System Development
Changchun Institute of Optics Fine Mechanics and Physics
Resolution.
Early calibration results of FY-4A/GIIRS during in-orbit testing
Shanghai Institute of Technical Physics , Chinese Academy of Science
Remote sensing in meteorology
Hyperspectral Terminology
MERIS Level 1b processing Ludovic Bourg
Presentation transcript:

AITA 9, MERTIS Team – MERTIS Calibration, Oct 2007 Folie 1 Development of a calibration concept for the MErcury Thermal Infrared Spectrometer Thomas Saeuberlich, Eckehard Lorenz, Wolfgang Skrbek, Ingo Walter, Carsten Paproth, Joern Helbert German Aerospace Center (DLR) Optical Information Systems Rutherfordstr. 2, Berlin, Germany

AITA 9, MERTIS Team – MERTIS Calibration, Oct 2007 Folie 2 MERTIS Calibration (a)determination of coefficients for the conversion of the digital number output DN ij of each spectro-spatial channel (i,j) into radiance values L ij (b) characterization of the optical, thermal and electronical status of the instrument (c) determination of the accuracy of the acquired values (d) characterization of system stability CalibrationOn-GroundIn-Flight spectral wavelength assignment, SSD, spectral resolution - radiometric sensitivity, offset, noiseoffset, sensitivity, noise geometric line of sight of pixels, geometric resolution - Goals:

AITA 9, MERTIS Team – MERTIS Calibration, Oct 2007 Folie 3 MERTIS Calibration – Experimental Setup & Procedure object-images (shutter open) for each blackbody temperature T BB in [50°C….1000°C] with  T BB = 50 K and an additional measurement of dark-images (shutter closed) 2.calculation of the difference image from the averaged images for object- and dark-measurements 1.assignment of CWL to each channel (i,j) using narrow band passes (FWHM = 100nm) in the spectral range [7 µm…14 µm] and  = 0.5 µm 2.calculation of the spectral sampling distance SSD = l j+1 -l j = 88 nm Spectral Calibration: Radiometric Measurement: MERTIS optics including TMA, Shutter, Slit, Offner- Spectrometer, Bolometer Detector Array

AITA 9, MERTIS Team – MERTIS Calibration, Oct 2007 Folie 4 MERTIS Calibration – Radiation Signal Transformation I (i,j)-single channel; i corresponds to the spatial and j to the spectral direction U ij,opened -measured and averaged voltage for channel (i,j) with shutter open U ij,closed -measured and averaged voltage for channel (i,j) with shutter closed U ij,diff -difference voltage calculated from the measured voltages with opened and closed shutter U 0,ij -residual offset r ij -channel sensitivity L-spectral radiance according to the Planck Law T BB -blackbody temperature SSD-spectral sampling distance (SSD=88 nm for current breadboard)  j -spectral interval that corresponds to a single channel (i,j) linear approach model does currently not include the spectral and spatial smearing

AITA 9, MERTIS Team – MERTIS Calibration, Oct 2007 Folie 5 MERTIS Calibration – Radiation Signal Transformation II spatial direction (index i) spectral direction (index j) object temperature 50°C 1000°C The cross marks channel (i,j) = (88,88) that corresponds to a spectral position of 9µm within the area illuminated by the blackbody verification of linear dependence between the incoming (integrated) radiance and the measured voltages for channel (88,88) calculation of the calibration coefficients (residual offset U 0 and sensitivity r ij ) by a linear fit 6.3µm 16.8 µm 37 < i < 137  slit height

AITA 9, MERTIS Team – MERTIS Calibration, Oct 2007 Folie 6 MERTIS Calibration – Calibration Coefficients spectral distribution of the sensitivity r 88,j spectral distribution of the residual offset U 0,88,j

AITA 9, MERTIS Team – MERTIS Calibration, Oct 2007 Folie 7 MERTIS Calibration – Application of Calibration Coefficients I r ij and U 0,ij can be applied to dark-corrected raw images in order to calculate the (integrated) radiances L int,ij having an error e ij :

AITA 9, MERTIS Team – MERTIS Calibration, Oct 2007 Folie 8 MERTIS Calibration – Application of Calibration Coefficients II The radiances L int,ij calculated from a dark-corrected raw measurement can be used to calculate temperatures T ij using Planck´s law and assuming a small SSD (which actually is only 88 nm): +/- 3 K +/- 7 K +/- 15 K

AITA 9, MERTIS Team – MERTIS Calibration, Oct 2007 Folie 9 a spectro-radiometric calibration procedure for 1st MERTIS prototype has been developed 2-step background correction used linear approach for modeling the signal transformation from an incoming radiance into a measured voltage approach verified by calculating the temperature of the reference radiator for each spectral channel in the spectral interval [7 µm…14 µm] the temperature error is ± 3 K…± 15 K depending on the object temperature (1000°C – 100°C) topics of the following investigations: model has to be extended by the spectral and spatial smearing effects caused by the optics determination of the spectral and spatial resolution MERTIS Calibration – Conclusion