L. Teriaca, IMPRS Seminar, Lindau 08/12/04 Spectroscopy of the solar Transition Region and Corona L. Teriaca.

Slides:



Advertisements
Similar presentations
Addition Facts
Advertisements

Line Features in RHESSI Spectra Kenneth J. H. Phillips Brian R. Dennis GSFC RHESSI Workshop Taos, NM 10 – 11 September 2003.
Thermal and nonthermal contributions to the solar flare X-ray flux B. Dennis & K. PhillipsNASA/GSFC, USA J. & B. SylwesterSRC, Poland R. Schwartz & K.
The Solar Corona – contd.
Addition 1’s to 20.
Masuda Flare: Remaining Problems on the Looptop Impulsive Hard X-ray Source in Solar Flares Satoshi Masuda (STEL, Nagoya Univ.)
Thick Target Coronal HXR Sources Astrid M. Veronig Institute of Physics/IGAM, University of Graz, Austria.
Physical characteristics of selected X-ray events observed with SphinX spectrophotometer B. Sylwester, J. Sylwester, M. Siarkowski Space Research Centre,
1 Hinode Coordinated Observations: Heat Transfer Contributed by the Hinode/EIS team through the Naval Research Laboratory and University College London.
Coronal Responses to Explosive Events Adria C. Updike Smith College / Harvard-Smithsonian Center for Astrophysics Amy Winebarger and Kathy Reeves, Center.
1 Plasma flows during solar flares A. Berlicki Observatoire de Paris, Section de Meudon, LESIA (Astronomical Institute of the Wrocław University, Poland)
Non-Equilibrium Ionization Modeling of the Current Sheet in a Simulated Solar Eruption Chengcai Shen Co-authors: K. K. Reeves, J. C. Raymond, N. A. Murphy,
Estimating the Chromospheric Absorption of Transition Region Moss Emission Bart De Pontieu, Viggo H. Hansteen, Scott W. McIntosh, Spiros Patsourakos.
Super-Hot Thermal Plasmas in Solar Flares
Ryan Payne Advisor: Dana Longcope. Solar Flares General  Solar flares are violent releases of matter and energy within active regions on the Sun.  Flares.
Working Group 2 - Ion acceleration and interactions.
RHESSI/GOES Observations of the Non-flaring Sun from 2002 to J. McTiernan SSL/UCB.
Measuring the Temperature of Hot Solar Flare Plasma with RHESSI Amir Caspi 1,2, Sam Krucker 2, Robert P. Lin 1,2 1 Department of Physics, University of.
Coronal HXR sources a multi-wavelength perspective.
RHESSI/GOES Observations of the Non-flaring Sun from 2002 to J. McTiernan SSL/UCB.
Ingolf E. Dammasch ROB/SIDC Brussels, Belgium Solar UV Spectroscopy with SUMER on SOHO (extended version for 11 Oct 2007)
08__050610_SCIP/SEB_PSR_Delivery.1 Temperature and Density Diagnostics with SECCHI EUVI J.S. Newmark Naval Research Laboratory (202)
Tackling the coronal heating problem using 3D MHD models with spectral synthesis Solar eclipse, , Wendy Carlos & John Kern  observational constraints.
Properties of Prominence Motions Observed in the UV T. A. Kucera (NASA/GSFC) E. Landi (Artep Inc, NRL)
Solar Prominence Properties derived from the UV-EUV SUMER spectral atlas S. Parenti, J.-C. Vial, P. Lemaire IAS, Univeristé Paris Sud.
1 Sunspot Studies in Oslo with CDS,SUMER,MDI and TRACE A final report (maybe). Per Maltby NilsBrynildsen Olav Kjeldseth-Moe, Per Maltby, Terje Fredvik.
Magnetic Reconnection Rate and Energy Release Rate Jeongwoo Lee 2008 April 1 NJIT/CSTR Seminar Day.
European Joint PhD Programme, Lisboa, Diagnostics of Fusion Plasmas Spectroscopy Ralph Dux.
Detection of X-ray resonant scattering in active stellar coronae Paola Testa 1,2, J.J. Drake 2, G. Peres 1, E.E. DeLuca 2 1 University of Palermo 2 Harvard-Smithsonian.
Science drivers for wavelength selection: Quiet Sun and Active regions Hardi Peter Kiepenheuer-Institut Freiburg, Germany Contribution to the discussions.
Coronal Heating of an Active Region Observed by XRT on May 5, 2010 A Look at Quasi-static vs Alfven Wave Heating of Coronal Loops Amanda Persichetti Aad.
Solar-B/EIS high-cadence observation for diagnostics of the corona and TR S. Kamio (Kyoto Univ.) Solar-B domestic meeting.
EUV Spectroscopy. High-resolution solar EUV spectroscopy.
Thermal, Nonthermal, and Total Flare Energies Brian R. Dennis RHESSI Workshop Locarno, Switzerland 8 – 11 June, 2005.
High Resolution Imaging and EUV spectroscopy for RHESSI Microflares S. Berkebile-Stoiser 1, P. Gömöry 1,2, J. Rybák 2, A.M. Veronig 1, M. Temmer 1, P.
September 21, 2005Peter Gallagher (UCD) Chromospheric Evaporation Peter Gallagher University College Dublin Ryan Milligan Queen’s University Belfast.
Locarno, 8 June 2005Peter Gallagher (UCD) Chromospheric Evaporation Peter Gallagher University College Dublin Ryan Milligan Queens University Belfast.
Lyndsay Fletcher, University of Glasgow Ramaty High Energy Solar Spectroscopic Imager Fast Particles in Solar Flares The view from RHESSI (and TRACE) MRT.
Where is Coronal Plasma Heated? James A. Klimchuk NASA Goddard Space Flight Center, USA Stephen J. Bradshaw Rice University, USA Spiros Patsourakos University.
The Influence of the Return Current and the Electron Beam on the X-Ray Flare Spectra Elena Dzifčáková, Marian Karlický Astronomical Institute of the Academy.
The Influence of the Return Current and Electron Beam on the EUV and X-Ray Flare Emission E. Dzifčáková, M. Karlický Astronomical Institute of the Academy.
Diagnostics of non-thermal n-distribution Kulinová, A. AÚ AVČR, Ondřejov, ČR FMFI UK, Bratislava, SR.
Flows in hot coronal loops: mass cycle and coupling from chromosphere to corona Pia Zacharias, Sven Bingert, Hardi Peter Solar Cycle 24 Napa, California.
Spectral Signature of Emergent Magnetic Flux D1 神尾 精 Solar Seminar Balasubramaniam,K.S., 2001, ApJ, 557, 366. Chae, J. et al., 2000, ApJ, 528,
The redshifted footpoints of coronal loops I.E. Dammasch (1), W. Curdt (2), B.N. Dwivedi (2,3), S. Parenti (1) (1) Royal Observatory of Belgium, Brussels,
Joint session WG4/5 Points for discussion: - Soft-hard-soft spectral behaviour – again - Non-thermal pre-impulsive coronal sources - Very dense coronal.
NON-THERMAL   DISTRIBUTIONS AND THE CORONAL EMISSION J. Dudík 1, A. Kulinová 1,2, E. Dzifčáková 1,2, M. Karlický 2 1 – OAA KAFZM FMFI, Univerzita Komenského,
Cycle 24 Meeting, Napa December 2008 Ryan Milligan NASA/GSFC Microflare Heating From RHESSI and Hinode Observations Ryan Milligan NASA-GSFC.
RHESSI and the Solar Flare X-ray Spectrum Ken Phillips Presentation at Wroclaw Workshop “ X-ray spectroscopy and plasma diagnostics from the RESIK, RHESSI.
Microwave emission from the trapped and precipitated electrons in solar bursts J. E. R. Costa and A. C. Rosal1 2005, A&A, 436, 347.
Emission Measure Distributions: A Tutorial Nancy S. Brickhouse Harvard-Smithsonian Center for Astrophysics From Spectral Lines to Emission Measures Emission.
Coronal X-ray Emissions in Partly Occulted Flares Paula Balciunaite, Steven Christe, Sam Krucker & R.P. Lin Space Sciences Lab, UC Berkeley limb thermal.
IAS 20 June 2013 Celebrating the achievements of Alan Gabriel Laboratory spectroscopy Exploring the process of dielectronic recombination S. Volonte.
Observations of the Thermal and Dynamic Evolution of a Solar Microflare J. W. Brosius (Catholic U. at NASA’s GSFC) G. D. Holman (NASA/GSFC)
Review: Recent Observations on Wave Heating S. Kamio Kwasan and Hida Observatories Kyoto University.
X-ray Spectroscopy of Coronal Plasmas Ken Phillips Scientific Associate, Natural History Museum, and Honorary Prof., QUB 1.
Physics of Solar Flares
Diagnostic of Chromospheric Flare Plasma
Linking in-situ measurements with SPICE
VI. Forecasting Solar EUV/UV Radiation – EUV spectral synthesis
Coronal Structure CSI /PHYS Solar Atmosphere Fall 2004
Lecture 3 Radiative Transfer
Teriaca, et al (2003) ApJ, 588, SOHO/CDS HIDA/DST 2002 campaign
Studying Transition Region Phenomena with Solar-B/EIS
Chromospheric and Transition Region Dynamics
High-cadence Radio Observations of an EIT Wave
Understanding solar flares from optical observations Heinzel, P
VOTADA VO Tools and Atomic Data for Astrophysics
Nonthermal Electrons in an Ejecta Associated with a Solar Flare
Spectroscopy of solar prominences simultaneously from space and ground
Presentation transcript:

L. Teriaca, IMPRS Seminar, Lindau 08/12/04 Spectroscopy of the solar Transition Region and Corona L. Teriaca

L. Teriaca, IMPRS Seminar, Lindau 08/12/04 The Solar Corona Composite photo of the August 11, 1999 total eclipse. Lake Hazar, Turkey.

L. Teriaca, IMPRS Seminar, Lindau 08/12/04 The Solar Corona Raw spectra obtained on 19 June 1936 during a total eclipse observed from the former Soviet Union. T e =1 – 2 MK

L. Teriaca, IMPRS Seminar, Lindau 08/12/04 The Solar Chromosphere Photo of the August 11, 1999 total eclipse. Kastamonu, Turkey. T e =10 4 K

L. Teriaca, IMPRS Seminar, Lindau 08/12/04 The Solar Transition Region

L. Teriaca, IMPRS Seminar, Lindau 08/12/04 Radiant power density Optically thin plasma Spectral radiant power density: Radiant power density:

L. Teriaca, IMPRS Seminar, Lindau 08/12/04 Radiant power density

L. Teriaca, IMPRS Seminar, Lindau 08/12/04 Radiant power density Normalised radiant power density Contribution function

L. Teriaca, IMPRS Seminar, Lindau 08/12/04 Line radiance

L. Teriaca, IMPRS Seminar, Lindau 08/12/04 Differential emission measure

L. Teriaca, IMPRS Seminar, Lindau 08/12/04 Atomic processes Characteristic times for the relevant atomic processes in the Transition region as calculated for the C IV line at nm (T e =10 5 K, N e =10 10 cm −3 ).

L. Teriaca, IMPRS Seminar, Lindau 08/12/04 Thermal equilibrium Ne (cm −3 ) Te (K) 5× τ ee = 10 −3 τ pp = 0.04 τ ei = 0.8 τ ee = 5×10 −5 τ pp = 2×10 −3 τ ei = τ ee = 0.03 τ pp = 1.3 τ ei = 26 τ ee = 0.02 τ pp = 0.7 τ ei = 1.3

L. Teriaca, IMPRS Seminar, Lindau 08/12/04 Ionization (N ion /N el ) qcollisional ionization α r radiative recombination α d dielectronic recombination

L. Teriaca, IMPRS Seminar, Lindau 08/12/04 Ionisation (N ion /N el )

L. Teriaca, IMPRS Seminar, Lindau 08/12/04 Excitation (N j /N ion )

L. Teriaca, IMPRS Seminar, Lindau 08/12/04 Collisional rate coefficients

L. Teriaca, IMPRS Seminar, Lindau 08/12/04 Excitation (N j /N ion )

L. Teriaca, IMPRS Seminar, Lindau 08/12/04 Excitation (N j /N ion ) CHIANTI atomic database:

L. Teriaca, IMPRS Seminar, Lindau 08/12/04 Abundance (N el /N H )

L. Teriaca, IMPRS Seminar, Lindau 08/12/04 Two – level atom ugug N g =N ion

L. Teriaca, IMPRS Seminar, Lindau 08/12/04 Formation temperature

L. Teriaca, IMPRS Seminar, Lindau 08/12/04 T = 0.7×10 4 K T = 1.8×10 5 K T = 2.5×10 5 K

L. Teriaca, IMPRS Seminar, Lindau 08/12/04 T = 2.5×10 5 K T = 1.8×10 5 K T = 1.0×10 6 K T = 1.4×10 6 K T ≈ 10 4 K

L. Teriaca, IMPRS Seminar, Lindau 08/12/04 Emission Measure

L. Teriaca, IMPRS Seminar, Lindau 08/12/04 Electron density Density sensitive line radiance ratio → f=10 −2 – 10 −5

L. Teriaca, IMPRS Seminar, Lindau 08/12/04 Coronal densities Banerjee, Teriaca, Doyle, Wilhelm, 1998, A&A 339, 208

L. Teriaca, IMPRS Seminar, Lindau 08/12/04 Electron temperatures If we consider an isothermal plasma, the ratio of two allowed transitions from adjacent ionization stages reduces to the ratio of their contribution functions. If we consider two allowed transitions from the ground state of the same ion: sensitive to the temperature if:

L. Teriaca, IMPRS Seminar, Lindau 08/12/04 Line profile In the solar corona: Assuming that the ions follow a Maxwellian distribution: where:

L. Teriaca, IMPRS Seminar, Lindau 08/12/04 Line profile As an example, for N V nm, (T e =1.8×10 5 K), However, we observe:

L. Teriaca, IMPRS Seminar, Lindau 08/12/04 Non–thermal velocity Teriaca, Banerjee, Doyle, 1999, A&A, 349, 636

L. Teriaca, IMPRS Seminar, Lindau 08/12/04 Doppler shift Teriaca, Banerjee, Doyle, 1999, A&A, 349, 636

L. Teriaca, IMPRS Seminar, Lindau 08/12/04 Chromospheric evaporation in flares L. Teriaca et al. Large upflows in CDS Fe XIX line at the footpoints of the flaring loop system during the impulsive phase. Red contours indicate Hα downflows of ≈10 km s −1 One hour later the flaring loops start to appear in the TRACE 17.1 nm band and are fully visible around 16:20 UT. RHESSI data, starting at 14:50 UT, shows non thermal emission still present at the right footpoint

L. Teriaca, IMPRS Seminar, Lindau 08/12/04 Supersonic flows in a Quiet Sun loop L. Teriaca et al. 2004, A&A 427, 1065 a) O VI SUMER raster of a small QS area. Black contours show magnetic flux of −10, −25, −40 G. Black + indicate the locations of strong non–Gaussian line profiles. The dashed red line indicates the projection on the plane of the sky of a semicircular loop with a diameter of 13". The black dots show the position of the observed loop. b, d) Profiles on the legs of the loop with the results of a 3 component Gaussian fitting. c) Profile at loop top. The dotted line shows the average QS profile times 4.9. Observed speeds are consistent with the LOS component of a supersonic siphon–like flow of ≈130 km s −1 along the loop.