* Heteroskedasticity * Serial correlation * Multicollinerity * Normality * Omitted variables
Prototype
* Error learning misal: belajar mengetik * Sampel yang beragam rumahtangga dgn pendptn, perusahaan berbagai level * Adanya outlier * Omitting variables * Sebaran data tidak normal * incorrect data transformation (e.g., ratio or first difference transformations) and * incorrect functional form (e.g., linear versus log–linear models) * lebih sering terjadi pada data cross section
* BLUE? * Linear Unbiased but not efficient LU Homoscedastic? Which is the Homoscedastic?
*B*B agaimana estimasi yg diperoleh terkait varians yg tidak konstan? *-*- Signifikansi ? *-*- CI ? ** misleading …
* Nature of problem (functional form review ) * Periksa Grafik residual * Tes statistik
H0: residuals are homoskedastic H1: residuals are heteroskedastic
* Goldfeld-Quandt Test: the heteroscedastic variance, σ 2 i, is positively related to one of the explanatory variables in the regression model, ex: * σ 2 i would be larger, the larger the values of Xi * Weakness: * - depend on which c is arbitrary, * - for X > 1 Var, which X is correct to be ordered?
* Y = Income, * X = Consumption, * n = 30, * c = 4
* Y = Income, X = Consumption, n = 30, c = 4
* Breusch–Pagan–Godfrey Test * Weakness: - large sample needed for small sample, depend much on normality assumption Ex: So, H0: residuals are Homoskedastic
ESS = SSR
* White’s General Heteroscedasticity Test. * Weakness: more variables will consume more df. H0: residuals are homoskedastic Or H0: , df = # parameter -1
Obtain residual, then estimate
* Find other references…
Reparameterize before analize !
* Practically, run OLS first, then run: * consistent estimator large sample needed
* Run the following (weighted) regression: * Compare with the unweighted Apa perbedaan kedua model ini?
* White suggests: * For RLB:
* Pelajari Gujarati, Basic Econometrics, 14 th edition, * Ch. 11, section 11.7