The surface of Pluto-twin TNOs 2005 FY 9 and 2003 UB 313 Javier Licandro (1,2), N. Pinilla-Alonso (3), M. Pedani (3), E. Oliva (3), P. Leisy (1), G.P.

Slides:



Advertisements
Similar presentations
Laboratory data and modeling of Pluto’s spectra
Advertisements

THESIS – the Terrestrial and Habitable-zone Exoplanet Spectroscopy Infrared Spacecraft a concept for a joint NASA/ESA exoplanet characterization mission.
The Earth’s transmission spectrum from lunar eclipse observations:
POLARIMETRIC OBSERVATIONS OF TNOs AND CENTAURS AT THE ESO-VLT Institute of Astronomy, Kharkiv National University, Ukraine Irina Belskaya In collaboration.
The impact of water vapour continuum on absorption of solar radiation – a preliminary analysis of the impact of the new RAL measurements Julie Chenery,
The retrieval of snow properties from space: theory and applications A. A. Kokhanovsky 1, M. Tedesco 2,3, G. Heygster 1, M. Schreier 1, E. P. Zege 4 1)University.
Dependencia de la humedad de saturación (q*) con la temperatura (T) Pendiente crece con la temperatura.
Applications of space-borne Carbon- monoxide measurements in Atmospheric Chemistry and Air Quality Maarten Krol, Wageningen University / SRON / IMAU Jos.
1 Detecting Biosignatures of an Evolving Earth-like Atmosphere via New Worlds Observer Julia DeMarines University of Colorado newworlds.colorado.edu AbGradCon.
A window to transiting exoplanet characterization.
Spitzer Thermal Radiometry of TNOs John Stansberry Will Grundy John Spencer Mike Brown Dale Cruikshank.
Pluto: the next decade of discovery Leslie Young Southwest Research Institute
Laboratory data on ices, minerals and organics for TNOs and Centaurs: what is missing ? C. de Bergh 1, B. Schmitt 2, D.P. Cruikshank 3, L. Moroz 4, E.
Physical Properties of the Snowpack Richard Brandt – University of Washington Paul Smith’s College 21 Feb 2006.
News from the Canary Islands… Raquel Oreiro. ROQUE DE LOS MUCHACHOS LA PALMA TEIDE OBSERVATORY.
Evidence of icy grains in the coma of comet 103P/Hartley 2 from ground based observations G. P. Tozzi 1, P. Patriarchi 1, E. Mazzotta-Epifani 2, L. M.
Propane on Titan H.G. Roe 1, T. Greathouse, M. Richter, J. Lacy 1 Div. Of Geological and Planetary Sciences, CalTech Roe, H. et al. 2003, ApJ, 597, L65.
The Earthshine Spectrum in the Near Infrared M. Turnbull 1, W. Traub 2, K. Jucks 3, N. Woolf 4, M. Meyer 4, N. Gorlova 4, M. Skrutskie 5, J. Wilson 5 1.
Titan’s Atmospheric Chemistry Emily Schaller GE/AY 132 March 2004.
Composition, Physical State and Distribution of Ices at the Surface of Triton Laura Brenneman ASTR688R Project, 12/9/04.
1 Lab experiments on phyllosilicates and comparison with CRISM data of Mars Mario Parente, Janice L. Bishop and Javier Cuadros.
AOSC 637 Lesson 24. Uranus Has been visited by Voyager 2 in Plane spins on an axis almost parallel to the ecliptic plane. Polar regions can point.
Lunar Observations of Changes in the Earth’s Albedo (LOCEA) Alexander Ruzmaikin Jet Propulsion Laboratory, California Institute of Technology in collaboration.
Infrared spectroscopy of Hale-Bopp comet Rassul Karabalin, Ge/Ay 132 Caltech March 17, 2004.
Chapter 2: Weather Factors
Composition and Surface Diversity of the Kuiper Belt objects Audrey Delsanti IFA - University of Hawai`i - NAI Audrey Delsanti IFA - University of Hawai`i.
Radiation Processing in the Kuiper Belt Mike Brown Caltech.
C.M. Rodrigue, 2007 Geography, CSULB Mars: Sources of Data from the Robotic Missions IV Geography S/07 Dr. Christine M. Rodrigue.
 The solar system has 8 planets.  The solar system has 1dwarf planet named Pluto.
© 2012 HORIBA Scientific. All rights reserved. Applications of Raman microspectroscopy to fluid inclusions phase identification. S. Mamedov *, R. S. Darling.
The sun The sun is a star. It is a huge, spinning, glowing sphere of hot gas. The sun is just like the stars that you see in the night sky. It appears.
Foundations of Astronomy
Nine Planets A Write On Activity In this activity you will:  Learn about the solar system.  Practice your knowledge in an interactive game.  Select.
Lecture 11: Beyond Mars - the World of Solar System Planets & their Moons: Europa, Titan, Enceladus 1.Giant planets vs. Earth-like planets 2.Life beyond.
The Arctic Climate Paquita Zuidema, RSMAS/MPO, MSC 118, Feb, 29, 2008.
PREPARATION OF ZnO NANOWIRES BY ELECTROCHEMICAL DEPOSITION
The Solar System: A6: Telescopes.
Telescopes.
Uranus and Neptune Uranus: general information –Discovered in 1781 (Herschel) –Radius about 4x that of Earth –Mass about 14.5x that of Earth –Nearly featureless.
1 An emerging field: Molecules in Extrasolar Planets Jean Schneider - Paris Observatory ● Concepts and Methods ● First results ● Future perspectives.
: The Golden Age of Solar System Exploration TNOs: Four decades of observations. F. Merlin M.A. Barucci S. Fornasier D. Perna.
The Outer Worlds. Update! International Astronomical Union (IAU) voted on the re- definition of planets in Prague on Aug. 24, Pluto is no longer.
Telescopes.
 Introduction  Surface Albedo  Albedo on different surfaces  Seasonal change in albedo  Aerosol radiative forcing  Spectrometer (measure the surface.
Emily L. Schaller April 28, 2008 II. Volatile Ices on Outer Solar System Objects I. Seasonal Changes in Titan’s Cloud Activity.
The Second TEMPO Science Team Meeting Physical Basis of the Near-UV Aerosol Algorithm Omar Torres NASA Goddard Space Flight Center Atmospheric Chemistry.
Unusual radio BAL quasar Chris Benn 1, Ruth Carballo 2, Joanna Holt 3, Mario Vigotti 4, Ignacio Gonz á lez-Serrano 2, Karl-Heinz Mack 4, Rick.
Thessaloniki, Oct 3rd 2009 Cool dusty galaxies: the impact of the Herschel mission Michael Rowan-Robinson Imperial College London.
Use of Solar Reflectance Hyperspectral Data for Cloud Base Retrieval Andrew Heidinger, NOAA/NESDIS/ORA Washington D.C, USA Outline " Physical basis for.
The Dust Environment of Main-Belt Comet P/2012 T1 (Pan-STARRS) Moreno, F.(1); Cabrera-Lavers, A.(2,3,4); Vaduvescu, O.(2,5); Licandro, J.(2,3); Pozuelos,
Aerosol distribution and physical properties in the Titan atmosphere D. E. Shemansky 1, X. Zhang 2, M-C. Liang 3, and Y. L. Yung 2 1 SET/PSSD, California,
NIR.
Atmospheric extinction Suppose that Earth’s atmosphere has mass absorption coefficient  at wavelength. If f 0 is flux of incoming beam above atmosphere,
Leonardo Testi: Formation and Evolution of Brown Dwarfs, Stars in Galaxies, La Palma, Mar 8, 2003 Origin and Early Evolution of Brown Dwarfs Leonardo Testi,
NIR, MIR, & FIR.  Near-infrared observations have been made from ground based observatories since the 1960's  Mid and far-infrared observations can.
Perceiving COLOR …like an Artist. What colors do you see? atch?v=9Q63z6GIPm0.
Centaur Physical Properties and Dynamics Emily Schaller (University of Arizona) Nader Haghighipour (University of Hawaii) Mike Brown (Caltech)
Surface Characterization 4th Annual Workshop on Hyperspectral Meteorological Science of UW MURI And Beyond Donovan Steutel Paul G. Lucey University of.
Characterisation of hot Jupiters by secondary transits observed with IRIS2 Lucyna Kedziora-Chudczer (UNSW) George Zhou (Harvard-Smithsonian CfA) Jeremy.
Infrared spectroscopy of planetological molecules Isabelle Kleiner Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), Créteil, France.
The Jovian Planets.
The Eight Planets (13.14).
The Tools of the Astronomer
Carbon monoxide from shortwave infrared measurements of TROPOMI: Algorithm, Product and Plans Jochen Landgraf, Ilse Aben, Otto Hasekamp, Tobias Borsdorff,
14.4 The Solar System Outer Planets (page 562)
Pluto’s thermal lightcurve: SPITZER/MIPS observations
Ch.1, Sec.2 - Telescopes Optical Telescopes
The Jovian Planets Saturn Jupiter Uranus Neptune (roughly to scale)
UVIS Satellite surfaces update
CH=20km; CPS=12.5 microns; COT=1.6 Cloud Spectral Signature
Presentation transcript:

The surface of Pluto-twin TNOs 2005 FY 9 and 2003 UB 313 Javier Licandro (1,2), N. Pinilla-Alonso (3), M. Pedani (3), E. Oliva (3), P. Leisy (1), G.P. Tozzi (4) and W. Grundy (5) (1)Isaac Newton Group of Telescopes (2)Instituto de Astrofísica de Canarias (3)Fundación Galileo Galilei (4)INAF-Oss di Arcetri (5)Lowel Observatory

Pluto’s spectrum deep CH 4 ice bands, shifted by about 15A respect to laboratory. weak N 2 (2.15 microns) and CO (1.58, 2.35 microns) no deep water ice or CO 2 red in the visible  organics (tholins, irradiated CH 4 )?

2005 FY 9 Licandro et al Observed simultaneously with the TNG and WHT at La Palma on Aug. 1st, Deep CH 4 ice bands, some of them not seen in Pluto’s spectrum ( e.g microns) Red colour in the visible, similar to Pluto

2003 UB 313 Licandro et al Brown et al Near infrared spectrum of 2003 UB 313 similar to our 2005 FY 9 spectrum

2003 UB 313 Licandro et al. 2006, in preparation Observed with the WHT on Oct. 20th, 2005.

COLOURS Licandro et al. 2006, in preparation All present slightly red slope in the visible S’ measured using the 0.59 and microns reflectance S’(UB 313 )= 4 %/1000A S’(FY 9 )= 8.9 %/1000A S’(Pluto)= 8.9 %/1000A Posible organics in the surface, probably irradiated methane (Brunetto et al. this meeting). Less abuntant in 2003 UB 313

Band depths Licandro et al. 2006, in preparation FY9/Pluto (0.73) = 6 FY9/Pluto (0.89) = 3 FY9/UB313 (0.73)= 1.9 FY9/UB313 (0.89)= 1.1 Indicative of abundance and/or grain sizes

Band depths In the infrared the differences are smaller but consistent, light reflected from the 3 objects samples different mean optical pathlengths Saturation of deeper bands Different concentration of CH 4 and or thickness of the CH 4 layers

Band depths and saturation effects In the infrared the bands are highly saturated  visible spectral range is very important Weaker bands sample deeper layers

Band shifts: 2005 FY9 Licandro et al Band shifts respect to laboratory pure CH 4 ones indicative of dilusion in N 2 Shifts < 5 A  high concetration of CH 4 or no N 2 on 2005 FY 9 surface Atmosphere? Crucial to determine if there is some N 2

SHIFTED ? Band shifts: 2003 UB 313

Band shifts: 0.73 micron band Pluto CH4 (0.05cm) 2005 FY9 CH4 (4.5cm) 2003 UB313 CH4 (1.5cm)

Band shifts: 0.89 micron bands Pluto CH4 (0.05cm) 2005 FY9 CH4 (4.5cm) 2003 UB313 CH4 (1.5cm) NO!!!! Uncertainties on Sky lines < 1A Problems with wl calibration? NO!!!! Uncertainties on Sky lines < 1A

2003 UB313 shifted by 15 A CH4 (1.5cm) Band shifts: 2003 UB 313 Narower?

Band shifts: 2003 UB 313 There is CH4 diluted in N2 ice in the surface of 2003 UB 313 Weaker bands sample deeper layers  evidence of a vertical compositional gradient ? Colapse of the atmosphere?

Charons

Band shifts

La atmósfera de Plutón atmósfera de CH4, N2 y CO Condiciones suficientes de tamaño, masa, y temperatura

La atmósfera de Caronte? No se ha detectado

La superficie de Plutón bandas desplazadas  metano diluido en N 2 inhomogeneidades superficiales relacionadas con diferente composición y albedo

Observations Visible 4.2 William Herschel Telescope ISIS Infrarred 3.6 m Telescopio Nazionale Galileo NICS

Los TNOs grandes

Diferent composition or diferent surface evolution?