Describing Location in a Distribution

Slides:



Advertisements
Similar presentations
Describing Location in a Distribution 2.1 Measures of Relative Standing and Density Curves YMS3e AP Stats at LSHS Mr. Molesky 2.1 Measures of Relative.
Advertisements

AP Statistics: Section 2.2 C. Example 1: Determine if each of the following is likely to have a Normal distribution (N) or a non-normal distribution (nn).
Density Curves and Normal Distributions
CHAPTER 2 Modeling Distributions of Data
Chapter 2: The Normal Distribution
Density Curves and Normal Distributions
5-Minute Check on Section 2-1a Click the mouse button or press the Space Bar to display the answers. 1.What does a z-score represent? 2.According to Chebyshev’s.
3.3 Density Curves and Normal Distributions
Chapter 2.2 STANDARD NORMAL DISTRIBUTIONS. Normal Distributions Last class we looked at a particular type of density curve called a Normal distribution.
Density Curves and the Normal Distribution.
The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers CHAPTER 2 Modeling Distributions of Data 2.2 Density.
Describing Location in a Distribution 2.1 Measures of Relative Standing and Density Curves 2.1 Measures of Relative Standing and Density Curves Text.
CHAPTER 3: The Normal Distributions
2.1 Density Curves and the Normal Distribution.  Differentiate between a density curve and a histogram  Understand where mean and median lie on curves.
Density Curves Section 2.1. Strategy to explore data on a single variable Plot the data (histogram or stemplot) CUSS Calculate numerical summary to describe.
The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers CHAPTER 2 Modeling Distributions of Data 2.2 Density.
Measures of Relative Standing and Density Curves
Describing Location in a Distribution 2.1 Measures of Relative Standing and Density Curves YMS3e.
+ Progress Reports Homework Test Corrections Signed 1.
Chapter 5 The Standard Deviation as a Ruler and the Normal Model.
Case Closed The New SAT Chapter 2 AP Stats at LSHS Mr. Molesky The New SAT Chapter 2 AP Stats at LSHS Mr. Molesky.
Welcome to the Wonderful World of AP Stats.…NOT! Chapter 2 Kayla and Kelly.
Chapter 3.3 – 3.4 Applications of the Standard Deviation and Measures of Relative Standing.
Density Curves & Normal Distributions Textbook Section 2.2.
Daniel S. Yates The Practice of Statistics Third Edition Chapter 2: Describing Location in a Distribution Copyright © 2008 by W. H. Freeman & Company.
The Normal Model Chapter 6 Density Curves and Normal Distributions.
 2.1 Measures of Relative Standing and Density Curves.
Chapter 2 The Normal Distributions. Section 2.1 Density curves and the normal distributions.
Chapter 2: Modeling Distributions of Data
Continuous random variables
Continuous Distributions
Modeling Distributions of Data
CHAPTER 2 Modeling Distributions of Data
Entry Task Chapter 2: Describing Location in a Distribution
Chapter 2: Modeling Distributions of Data
CHAPTER 2 Modeling Distributions of Data
Chapter 2: Describing Location in a Distribution
Chapter 6 The Normal Curve.
Good Afternoon! Agenda: Knight’s Charge-please wait for direction
Describing Location in a Distribution
Chapter 2: Modeling Distributions of Data
Density Curves and Normal Distribution
CHAPTER 2 Modeling Distributions of Data
Describing Location in a Distribution
Describing Location in a Distribution
Chapter 2: Modeling Distributions of Data
Describing Location in a Distribution
CHAPTER 2 Modeling Distributions of Data
2.1 Density Curves and the Normal Distributions
Click the mouse button or press the Space Bar to display the answers.
Measuring location: percentiles
CHAPTER 2 Modeling Distributions of Data
CHAPTER 2 Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
2.2 Normal Distributions Normal Curves: symmetric, single-peaked, bell- shaped. and median are the same. Size of the will affect the spread of.
Chapter 2: Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
CHAPTER 2 Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
CHAPTER 2 Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
CHAPTER 2 Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
CHAPTER 2 Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
CHAPTER 2 Modeling Distributions of Data
CHAPTER 2 Modeling Distributions of Data
Presentation transcript:

Describing Location in a Distribution Text 2.1 Measures of Relative Standing and Density Curves YMS3e AP Stats at CSHNYC Ms. Namad

Sample Data Consider the following test scores for a small class: 79 81 80 77 73 83 74 93 78 75 67 86 90 85 89 84 82 72 Jenny’s score is noted in red. How did she perform on this test relative to her peers? 6 | 7 7 | 2334 7 | 5777899 8 | 00123334 8 | 569 9 | 03 Her score is “above average”... but how far above average is it?

Standardized Value One way to describe relative position in a data set is to tell how many standard deviations above or below the mean the observation is. Standardized Value: “z-score” If the mean and standard deviation of a distribution are known, the “z-score” of a particular observation, x, is:

Calculating z-scores Consider the test data and Julia’s score. 79 81 80 77 73 83 74 93 78 75 67 86 90 85 89 84 82 72 According to Minitab, the mean test score was 80 while the standard deviation was 6.07 points. Julia’s score was above average. Her standardized z-score is: Julia’s score was almost one full standard deviation above the mean. What about Kevin: x=

Calculating z-scores 6 | 7 7 | 2334 7 | 5777899 8 | 00123334 8 | 569 79 81 80 77 73 83 74 93 78 75 67 86 90 85 89 84 82 72 Julia: z=(86-80)/6.07 z= 0.99 {above average = +z} 6 | 7 7 | 2334 7 | 5777899 8 | 00123334 8 | 569 9 | 03 Kevin: z=(72-80)/6.07 z= -1.32 {below average = -z} Katie: z=(80-80)/6.07 z= 0 {average z = 0}

Comparing Scores Statistics Chemistry Standardized values can be used to compare scores from two different distributions. Statistics Test: mean = 80, std dev = 6.07 Chemistry Test: mean = 76, std dev = 4 Jenny got an 86 in Statistics and 82 in Chemistry. On which test did she perform better? Statistics Chemistry Although she had a lower score, she performed relatively better in Chemistry.

Percentiles Another measure of relative standing is a percentile rank. pth percentile: Value with p % of observations below it. median = 50th percentile {mean=50th %ile if symmetric} Q1 = 25th percentile Q3 = 75th percentile 6 | 7 7 | 2334 7 | 5777899 8 | 00123334 8 | 569 9 | 03 Jenny got an 86. 22 of the 25 scores are ≤ 86. Jenny is in the 22/25 = 88th %ile.

Chebyshev’s Inequality The % of observations at or below a particular z-score depends on the shape of the distribution. An interesting (non-AP topic) observation regarding the % of observations around the mean in ANY distribution is Chebyshev’s Inequality. Chebyshev’s Inequality: In any distribution, the % of observations within k standard deviations of the mean is at least

Density Curve Density Curve: In Chapter 1, you learned how to plot a dataset to describe its shape, center, spread, etc. Sometimes, the overall pattern of a large number of observations is so regular that we can describe it using a smooth curve. Density Curve: An idealized description of the overall pattern of a distribution. Area underneath = 1, representing 100% of observations.

Density Curves Density Curves come in many different shapes; symmetric, skewed, uniform, etc. The area of a region of a density curve represents the % of observations that fall in that region. The median of a density curve cuts the area in half. The mean of a density curve is its “balance point.”

Example Pretend you are rolling a die. The numbers 1,2,3,4,5,6 are the possible outcomes. In 120 rolls, how many of each number would you expect to roll? Calculator can do a simulation: Clear L1 in your calc. Use random integer generator to generate 120 random whole numbers between 1 and 6 then store in L1 RandInt (1, 6, 120) STO-> L1 Set viewing window: X (1,7) by Y (-5,25). Specify a histogram using the data in L1 Repeat simulation several times. 2nd Enter will recall/reuse the previous command. In theory we should expect a uniform outcome...

2.1 Summary We can describe the overall pattern of a distribution using a density curve. The area under any density curve = 1. This represents 100% of observations. Areas on a density curve represent % of observations over certain regions. An individual observation’s relative standing can be described using a z-score or percentile rank.

2.2 Normal Distributions Normal Curves: symmetric, single-peaked, bell- shaped. and median are the same. Size of the will affect the spread of the normal curve.

Example Scores on the SAT verbal test in recent years follow approximately the N (505, 110) distribution. How high must a student score in order to place in the top 10% of all students taking the SAT? 1. State the problem and draw a picture. Shade the area we’re looking for. 2. Find the Z score with the table 3. Convert to raw score.

Assessing Normality Method 1: Construct a histogram, see if graph is approximately bell-shaped and symmetric. Median and Mean should be close. Then mark off the -2, -1, +1, +2 SD points and check the 68-95-99.7 rule.

Normal Probability Plot Method 2: Construct Normal Probability Plot 1. Arrange the observed data values from smallest to largest. Record what percentile of the data each value occupies (example, the smallest observation in a set of 20 is at the 5% point, the second is at 10% etc.) Use Table A to find the Z’s at these same percentiles (example -1.645 is @ 5%, -1.28 is @10% Plot each data point against the corresponding Z (x- values on the horizontal axis, z-scores on the vertical axis is what I do, either is fine)

rkgnt Normal w/Outliers Right Skew Normal Interpretation: draw your X = Y line with a straight edge- points shouldn’t vary too much

Constructing Probability Plot on Calculator Students in Mr. Pryor’s stats class X values on horizontal axis 79 81 80 77 73 83 74 93 78 75 67 86 90 85 89 84 82 72

Case Closed The New SAT Chapter 2 AP Stats at CSHNYC Ms. Namad

I: Normal Distributions 1. SAT Writing Scores are N(516, 115) What percent are between 600 and 700? 516 SAT Writing Scores ≈N(516, 115) 600 %Between 600 and 700≈.9452-.7673≈.1779 %Below 700≈.9452 %Below 600≈.7673 700

I: Normal Distributions 1. SAT Writing Scores are N(516, 115) What score would place a student in the 65th Percentile? Table A Standard Normal probabilities (continued) z 0.00 0.01 ... 0.07 0.08 0.09 0.0 0.500 0.5040 0.5279 0.5319 0.5359 0.3 0.6179 0.6217 0.6443 0.6480 0.6517 0.4 0.6554 0.6591 0.6808 0.6844 0.6879 Table A Standard Normal probabilities (continued) z 0.00 0.01 ... 0.07 0.08 0.09 0.0 0.500 0.5040 0.5279 0.5319 0.5359 0.3 0.6179 0.6217 0.6443 0.6480 0.6517 0.4 0.6554 0.6591 0.6808 0.6844 0.6879 Table A Standard Normal probabilities (continued) z 0.00 0.01 ... 0.07 0.08 0.09 0.0 0.500 0.5040 0.5279 0.5319 0.5359 0.3 0.6179 0.6217 0.6443 0.6480 0.6517 0.4 0.6554 0.6591 0.6808 0.6844 0.6879 516 SAT Writing Scores ≈N(516, 115) ? 0.65

II: Comparing Observations 2. Male scores are N(491,110) Female scores are N(502,108) a) What % of males earned scores below 502? 491 Male Writing Scores ≈N(491,110) 502

II: Comparing Observations 2. Male scores are N(491,110) Female scores are N(502,108) b) What % of females earned scores above 491? 502 Female Writing Scores ≈N(502,108) 491

II: Comparing Observations 2. Male scores are N(491,110) Female scores are N(502,108) c) What % of males earned scores above the 85th %-ile of female scores? 85th %-ile for Females 614.32 491 Male Writing Scores ≈N(491,110)

III:Determining Normality 3a. Did males or females perform better? The male and female scores are very similar. Both have roughly symmetric distributions with no outliers. The median for females is slightly higher (580 vs 570), but the male average is slightly higher (584.6 vs 580). Both have similar ranges, but the males had slightly more variability in the middle 50%.

III:Determining Normality 3b. How do the male scores compare with National results? The males at this school did much better than the overall national mean (584.6 vs. 516). Their scores were also more consistent as evidenced by a lower standard deviation (80.08 vs 115).

III:Determining Normality 3c. Are the male and female scores approximately Normal? The Normal Quantile Plots for both the male and female scores are approximately linear. Therefore, there is evidence that their scores are approximately Normal.