Bison Management Suppose you take over the management of a certain Bison population. The population dynamics are similar to those of the population we.

Slides:



Advertisements
Similar presentations
CATHERINE AND ANNIE Python: Part 3. Intro to Loops Do you remember in Alice when you could use a loop to make a character perform an action multiple times?
Advertisements

Stored procedures and views You can see definitions for stored procedures and views in the demo databases but you can’t change them. For views, expand.
Chapter 7: Matrix Algebra 1.(7.1) Matrix Arithmetic a)Matrix-Vector Multiplication b)Matrix-Matrix Multiplication 2.(7.2) Applications 1.(7.1) Matrix Arithmetic.
Chapter 10: Estimating with Confidence
Algebra Problems… Solutions Algebra Problems… Solutions © 2007 Herbert I. Gross Set 4 By Herb I. Gross and Richard A. Medeiros next.
Chapter 19 Confidence Intervals for Proportions.
Mr Barton’s Maths Notes
INTEGRALS Areas and Distances INTEGRALS In this section, we will learn that: We get the same special type of limit in trying to find the area under.
Copyright © Cengage Learning. All rights reserved. 10 Introduction to the Derivative.
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 7-1 Introduction to Statistics: Chapter 8 Estimation.
Copyright © Cengage Learning. All rights reserved. 5 Integrals.
CHAPTER 8 Estimating with Confidence
Chapter 9: Leslie Matrix Models & Eigenvalues
Chapter 10: Estimating with Confidence
Lesson 4: Percentage of Amounts.
A quadratic equation is a second degree polynomial, usually written in general form: The a, b, and c terms are called the coefficients of the equation,
Chapter 13: Inference in Regression
Chapter 5 Sampling Distributions
Confidence Interval Estimation
Rounding Off Whole Numbers © Math As A Second Language All Rights Reserved next #5 Taking the Fear out of Math.
Example 16.1 Ordering calendars at Walton Bookstore
1 As we have seen in section 4 conditional probability density functions are useful to update the information about an event based on the knowledge about.
+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 8: Estimating with Confidence Section 8.1 Confidence Intervals: The.
ESTIMATES AND SAMPLE SIZES
1 Functions 1 Parameter, 1 Return-Value 1. The problem 2. Recall the layout 3. Create the definition 4. "Flow" of data 5. Testing 6. Projects 1 and 2.
+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 8: Estimating with Confidence Section 8.1 Confidence Intervals: The.
INTEGRALS Areas and Distances INTEGRALS In this section, we will learn that: We get the same special type of limit in trying to find the area under.
Trigonometric Equations M 140 Precalculus V. J. Motto.
Extending the Definition of Exponents © Math As A Second Language All Rights Reserved next #10 Taking the Fear out of Math 2 -8.
INTEGRALS 5. INTEGRALS In Chapter 2, we used the tangent and velocity problems to introduce the derivative—the central idea in differential calculus.
Integrals  In Chapter 2, we used the tangent and velocity problems to introduce the derivative—the central idea in differential calculus.  In much the.
Copyright © Cengage Learning. All rights reserved. 4 Integrals.
Copyright © Cengage Learning. All rights reserved. 3 Introduction to the Derivative.
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc. Chap 8-1 Confidence Interval Estimation.
Estimation of a Population Mean
 The point estimators of population parameters ( and in our case) are random variables and they follow a normal distribution. Their expected values are.
Solution of. Linear Differential Equations The first special case of first order differential equations that we will look is the linear first order differential.
Area Under the Curve We want to approximate the area between a curve (y=x 2 +1) and the x-axis from x=0 to x=7 We want to approximate the area between.
In Chapters 6 and 8, we will see how to use the integral to solve problems concerning:  Volumes  Lengths of curves  Population predictions  Cardiac.
1 Probability and Statistics Confidence Intervals.
Chapter 7: Sampling Distributions Section 7.2 Sample Proportions.
Objectives. Objective The purpose of this tutorial is to teach the viewer how to solve for the acceleration of each mass in a standard two- body pulley.
The inference and accuracy We learned how to estimate the probability that the percentage of some subjects in the sample would be in a given interval by.
The accuracy of averages We learned how to make inference from the sample to the population: Counting the percentages. Here we begin to learn how to make.
The expected value The value of a variable one would “expect” to get. It is also called the (mathematical) expectation, or the mean.
Introduction Sample surveys involve chance error. Here we will study how to find the likely size of the chance error in a percentage, for simple random.
Chapter 8: Estimating with Confidence
+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 8: Estimating with Confidence Section 8.1 Confidence Intervals: The.
The Law of Averages. What does the law of average say? We know that, from the definition of probability, in the long run the frequency of some event will.
INTEGRALS 5. INTEGRALS In Chapter 3, we used the tangent and velocity problems to introduce the derivative—the central idea in differential calculus.
Sampling Distributions
Chapter 8: Estimating with Confidence
Chapter 8: Estimating with Confidence
Prof. Mark Glauser Created by: David Marr
For example: Does the function
Confidence Interval Estimation
Chapter 8: Estimating with Confidence
Chapter 6 Confidence Intervals
Chapter 8: Estimating with Confidence
Chapter 8: Estimating with Confidence
Chapter 8: Estimating with Confidence
Chapter 8: Estimating with Confidence
Chapter 8: Estimating with Confidence
Chapter 8: Estimating with Confidence
Chapter 8: Estimating with Confidence
Chapter 8: Estimating with Confidence
Chapter 8: Estimating with Confidence
Chapter 8: Estimating with Confidence
Chapter 8: Estimating with Confidence
Presentation transcript:

Bison Management Suppose you take over the management of a certain Bison population. The population dynamics are similar to those of the population we considered in Project 2 but differ in a few important ways: The adult fecundity of this population is a bit higher. It is 0.45 instead of 0.42 The adult survival probability, however, is lower. It’s 0.8 instead of 0.95 The initial population vector is [42; 0; 45] instead of [42; 0; 95] This time the dynamics will reflect some stochasticity: from year to year, the adult fecundity and survival probabilities will vary over some interval of possible values. Suppose you take over the management of a certain Bison population. The population dynamics are similar to those of the population we considered in Project 2 but differ in a few important ways: The adult fecundity of this population is a bit higher. It is 0.45 instead of 0.42 The adult survival probability, however, is lower. It’s 0.8 instead of 0.95 The initial population vector is [42; 0; 45] instead of [42; 0; 95] This time the dynamics will reflect some stochasticity: from year to year, the adult fecundity and survival probabilities will vary over some interval of possible values. 151 Project 3

Bison Management First off, let’s re-open our m-file for Project 2, question 1.a: 151 Project 3

Bison Management Now update the fecundity & survival rates, and initial condition: 151 Project 3

Bison Management Before adding the randomness, let’s run the model: 151 Project 3 Population seems to be growing.

Bison Management Let’s modify our m-file for question 1.b. to see a graph: Again, seems to be growing. How can we know for sure? Let’s modify our m-file for question 1.b. to see a graph: Again, seems to be growing. How can we know for sure? 151 Project 3

Bison Management We find the dominant eigenvalue! If it’s greater than 1, then the population will grow: 151 Project 3 It is greater than 1, but notice that it is not much greater. This should indicate to us that small changes could be bad news for our bison.

Bison Management Now we need to add some randomness. Suppose that shortly after we took on this management job, we learned that the population is doing about as good as we could hope; that is, the current parameter values are historically high. From our perspective we decide to be conservative and assume that it will never be better that it is now. We determine from data that the adult survival probability ranges from 0.77 to 0.80 from year to year. Before adding randomness for adult fecundity, let’s explore the case where only survival probability varies. Now we need to add some randomness. Suppose that shortly after we took on this management job, we learned that the population is doing about as good as we could hope; that is, the current parameter values are historically high. From our perspective we decide to be conservative and assume that it will never be better that it is now. We determine from data that the adult survival probability ranges from 0.77 to 0.80 from year to year. Before adding randomness for adult fecundity, let’s explore the case where only survival probability varies. 151 Project 3

Bison Management Make the following changes to your code: 151 Project 3

Bison Management Remarks about the changes we just made: 1.Notice that the adult survival rate (the (3,3) entry of matrix A) is being changed each year. Let’s look at the MATLAB command “rand”: The command rand(1) always returns a random number between 0 and 1. Remarks about the changes we just made: 1.Notice that the adult survival rate (the (3,3) entry of matrix A) is being changed each year. Let’s look at the MATLAB command “rand”: The command rand(1) always returns a random number between 0 and Project 3

Bison Management We want to use this MATLAB function to choose a random number on an interval of our choosing- in this case, the interval (0.77,0.80). The command, “ *rand(1)” accomplishes this: This explains the line of code that updates our matrix each time step. We want to use this MATLAB function to choose a random number on an interval of our choosing- in this case, the interval (0.77,0.80). The command, “ *rand(1)” accomplishes this: This explains the line of code that updates our matrix each time step. 151 Project 3

Bison Management (continued) Remarks about the changes we just made: 2.Recall that we were able to derive a formula to give us the population at time t without needing to calculate the population values for all the previous time steps: Notice that one of the changes we just made was swapping out the formula shown here on the right-hand side for the one on the left-hand side. Why would we want to do this? (continued) Remarks about the changes we just made: 2.Recall that we were able to derive a formula to give us the population at time t without needing to calculate the population values for all the previous time steps: Notice that one of the changes we just made was swapping out the formula shown here on the right-hand side for the one on the left-hand side. Why would we want to do this? 151 Project 3 This formula allows to find the population size at the next time step. This formula allows to find the population size at any time step.

Bison Management Answer: We want to change the matrix A every time step (explained in remark 1) and we want to “remember” all of the previous information. The other formula would indeed reflect the change made to the matrix every time step but it would “erase” the previous changes by “going back”, as it were, and using this new matrix to recalculate all of the past values for v. You should think about why this is the case. 3. Finally, since we are only going to concern ourselves with the question of extinction, we get rid of the table showing the population values from year to year. We need only inspect the population size at the end of our simulation. The population size at the end of the simulation will be determined by looking at the vector v. Answer: We want to change the matrix A every time step (explained in remark 1) and we want to “remember” all of the previous information. The other formula would indeed reflect the change made to the matrix every time step but it would “erase” the previous changes by “going back”, as it were, and using this new matrix to recalculate all of the past values for v. You should think about why this is the case. 3. Finally, since we are only going to concern ourselves with the question of extinction, we get rid of the table showing the population values from year to year. We need only inspect the population size at the end of our simulation. The population size at the end of the simulation will be determined by looking at the vector v. 151 Project 3

Bison Management At the end of the 200 year run, the vector v will contain the population size of calves, yearlings, and adults at time step 200. To check for extinction, we observe the following: – We need to round the components of this vector so that it makes sense for a population. That is, it doesn’t make sense to say we have calves. We could reasonably say 4 calves. This explains why we use the command, “round(v)” – To check for extinction it is sufficient to add the 3 elements of vector v and check if they sum to zero. This explains why we use the command, “sum(round(v))” – To see this, run the code and you will get output like this: At the end of the 200 year run, the vector v will contain the population size of calves, yearlings, and adults at time step 200. To check for extinction, we observe the following: – We need to round the components of this vector so that it makes sense for a population. That is, it doesn’t make sense to say we have calves. We could reasonably say 4 calves. This explains why we use the command, “round(v)” – To check for extinction it is sufficient to add the 3 elements of vector v and check if they sum to zero. This explains why we use the command, “sum(round(v))” – To see this, run the code and you will get output like this: 151 Project 3 This is the final time, rounded population vector. This is the sum of the entries of that vector.

Bison Management Next, make the following changes to your code: 151 Project 3

Bison Management Remarks about the changes we just made: 1.We already had one for-loop that forecasted our population out to 200 time steps. Now we’d like to simulate this process, say, 1000 times. So we need to encase our existing loop within another loop. This explains the line of code, “for i=1:1000” and the “end” to which it is attached. 2.After each 200 year run, we need to see if the population is extinct. That is why we ask, “if sum(round(v))==0”. MATLAB will check to see if this condition is true. (When checking for an equality- as we are here- we have to use two equal signs.) If the condition is true, then MATLAB will carry out the following command. Otherwise, it will do nothing and move past the “if-end” line of code. Remarks about the changes we just made: 1.We already had one for-loop that forecasted our population out to 200 time steps. Now we’d like to simulate this process, say, 1000 times. So we need to encase our existing loop within another loop. This explains the line of code, “for i=1:1000” and the “end” to which it is attached. 2.After each 200 year run, we need to see if the population is extinct. That is why we ask, “if sum(round(v))==0”. MATLAB will check to see if this condition is true. (When checking for an equality- as we are here- we have to use two equal signs.) If the condition is true, then MATLAB will carry out the following command. Otherwise, it will do nothing and move past the “if-end” line of code. 151 Project 3

Bison Management (continued) Remarks about the changes we just made: 3. Now, if the population is extinct, we need to somehow take note of this fact. An easy way to accomplish this is to simply count how many times it happens. We start off with the count equal to zero. This explains the very first line of code where we initialize our extinction count, E, to be zero. 4.Then the first time our population goes extinct, MATLAB will set E=E+1 which would be E=0+1=1. The next time our population goes extinct, MATLAB will set E=E+1 which would be E=1+1=2. And so on. This explains the other part of the “if-end” line of code. 5.Finally, after the 1000 simulations, we ask MATLAB to output the percentage of the simulations wherein the population went extinct. This explains the very last line of code, “E/1000” (continued) Remarks about the changes we just made: 3. Now, if the population is extinct, we need to somehow take note of this fact. An easy way to accomplish this is to simply count how many times it happens. We start off with the count equal to zero. This explains the very first line of code where we initialize our extinction count, E, to be zero. 4.Then the first time our population goes extinct, MATLAB will set E=E+1 which would be E=0+1=1. The next time our population goes extinct, MATLAB will set E=E+1 which would be E=1+1=2. And so on. This explains the other part of the “if-end” line of code. 5.Finally, after the 1000 simulations, we ask MATLAB to output the percentage of the simulations wherein the population went extinct. This explains the very last line of code, “E/1000” 151 Project 3

Bison Management Now, let’s run this code a few times. Here’s the output from the command window: 151 Project 3 I ran the 1000 simulations of a 200 year forecast, 4 times. The population never went extinct!

Bison Management Now, let’s fix S back to 0.8 and repeat the previous steps with F ranging over (0.31, 0.45): 151 Project 3 Notice that instead of deleting the line of code for varying S, I have simply put a % in front of it. Now MATLAB won’t execute that line. This is handy since I want to use that line later. I won’t have to retype it; I just delete the %.

Bison Management Now, let’s run this code a few times. Here’s the output from the command window: 151 Project 3 I ran the 1000 simulations of a 200 year forecast, 5 times. The population went extinct approximately 13% of the time.

Bison Management Summary so far: When we let S vary over the interval (0.77, 0.80), our population never went extinct. When we let F vary over the interval (0.31, 0.45), our population went extinct ~13% of the time. Your tasks from here: 1)Without running the code, predict what will happen if you let both parameters vary. Now run the code and compare the results with your prediction. 2)Suppose you’ve been given a budget for management of the population. You can afford to either: a)Raise the lower bound of F by 0.05 to get (0.36,0.45) b)Raise the lower bound of S by to get (0.797,0.80) Based on the first 3 questions, predict which strategy you think is best. Explain your reasoning. 3)Now run the code several times for each strategy. Write down the results for each strategy. Which one should you choose? How does this compare with your prediction? Summary so far: When we let S vary over the interval (0.77, 0.80), our population never went extinct. When we let F vary over the interval (0.31, 0.45), our population went extinct ~13% of the time. Your tasks from here: 1)Without running the code, predict what will happen if you let both parameters vary. Now run the code and compare the results with your prediction. 2)Suppose you’ve been given a budget for management of the population. You can afford to either: a)Raise the lower bound of F by 0.05 to get (0.36,0.45) b)Raise the lower bound of S by to get (0.797,0.80) Based on the first 3 questions, predict which strategy you think is best. Explain your reasoning. 3)Now run the code several times for each strategy. Write down the results for each strategy. Which one should you choose? How does this compare with your prediction? 151 Project 3