Lets begin constructing the model… Step (I) - Definitions We begin with a very simple imaginary metabolic network represented as a directed graph: Vertex.

Slides:



Advertisements
Similar presentations
Unravelling the biochemical reaction kinetics from time-series data Santiago Schnell Indiana University School of Informatics and Biocomplexity Institute.
Advertisements

1 Modeling and Simulation: Exploring Dynamic System Behaviour Chapter9 Optimization.
Lecture #6 Open Systems. Biological systems are ‘open:’ Example: ATP production by mitochondria.
School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel
Introduction to Steady State Metabolic Modeling Concepts Flux Balance Analysis Applications Predicting knockout phenotypes Quantitative Flux Prediction.
Regulation of Gene Expression in Flux Balance Models of Metabolism.
Introduction to Algorithms
The (Right) Null Space of S Systems Biology by Bernhard O. Polson Chapter9 Deborah Sills Walker Lab Group meeting April 12, 2007.
Introduction to Linear and Integer Programming
Flux Balance Analysis. FBA articles Advances in flux balance analysis. K. Kauffman, P. Prakash, and J. Edwards. Current Opinion in Biotechnology 2003,
Energy Balance Analysis Reference Paper: Beard et al. Energy Balance for Analysis of Complex Metabolic Networks. Biophysical Journal 83, (2002) Presented.
Models and methods in systems biology Daniel Kluesing Algorithms in Biology Spring 2009.
1 2 Extreme Pathway Lengths and Reaction Participation in Genome Scale Metabolic Networks Jason A. Papin, Nathan D. Price and Bernhard Ø. Palsson.
Mathematical Representation of Reconstructed Networks The Left Null space The Row and column spaces of S.
Regulated Flux-Balance Analysis (rFBA) Speack: Zhu YANG
Flux balance analysis in metabolic networks Lecture notes by Eran Eden.
Metabolic network analysis Marcin Imielinski University of Pennsylvania March 14, 2007.
1 Escheria coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth Rafael U. Ibarra, Jeremy S. Edwards and Bernhard Ø. Palsson.
Seminar in bioinformatics Computation of elementary modes: a unifying framework and the new binary approach Elad Gerson, Spring 2006, Technion. Julien.
Humboldt- Universität zu Berlin Edda Klipp Systembiologie 3 - Stoichiometry Sommersemester 2010 Humboldt-Universität zu Berlin Institut für Biologie Theoretische.
Constraint-Based Modeling of Metabolic Networks Tomer Shlomi School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel March, 2008.
Humboldt- Universität Zu Berlin Edda Klipp, Humboldt-Universität zu Berlin Edda Klipp Systembiologie 4 – Flux Balance Analysis Sommersemester 2010 Humboldt-Universität.
Metabolic/Subsystem Reconstruction And Modeling. Given a “complete” set of genes… Assemble a “complete” picture of the biology of an organism? Gene products.
1 Introduction to Biological Modeling Steve Andrews Brent lab, Basic Sciences Division, FHCRC Lecture 3: Metabolism Oct. 6, 2010.
Extreme Pathways introduced into metabolic analysis by the lab of Bernard Palsson (Dept. of Bioengineering, UC San Diego). The publications of this lab.
VL Netzwerke, WS 2007/08 Edda Klipp 1 Max Planck Institute Molecular Genetics Humboldt University Berlin Theoretical Biophysics Networks in Metabolism.
Richard Notebaart Systems biology / Reconstruction and modeling large biological networks.
Biological Network Analysis: Introduction to Metabolic Networks Tomer Shlomi Winter 2008.
Lecture #23 Varying Parameters. Outline Varying a single parameter – Robustness analysis – Old core E. coli model – New core E. coli model – Literature.
Local Parametric Sensitivity Analysis AMATH 882 Lecture 4, Jan 17, 2013.
BsysE595 Lecture Basic modeling approaches for engineering systems – Summary and Review Shulin Chen January 10, 2013.
Flux Balance Analysis Evangelos Simeonidis Metabolic Engineering.
Transcriptional Regulation in Constraints-based metabolic Models of E. coli Published by Markus Covert and Bernhard Palsson, 2002.
Metabolic pathway alteration, regulation and control (5) -- Simulation of metabolic network Xi Wang 02/07/2013 Spring 2013 BsysE 595 Biosystems Engineering.
Modeling and identification of biological networks Esa Pitkänen Seminar on Computational Systems Biology Department of Computer Science University.
1 Introduction to Linear and Nonlinear Programming.
The Optimal Metabolic Network Identification Paula Jouhten Seminar on Computational Systems Biology
Solution Space? In most cases lack of constraints provide a space of solutions What can we do with this space? 1.Optimization methods (previous lesson)
Steady-state flux optima AB RARA x1x1 x2x2 RBRB D C Feasible flux distributions x1x1 x2x2 Max Z=3 at (x 2 =1, x 1 =0) RCRC RDRD Flux Balance Constraints:
BIOINFORMATICS ON NETWORKS Nick Sahinidis University of Illinois at Urbana-Champaign Chemical and Biomolecular Engineering.
1 Departament of Bioengineering, University of California 2 Harvard Medical School Department of Genetics Metabolic Flux Balance Analysis and the in Silico.
Introduction: Acknowledgments Thanks to Department of Biotechnology (DBT), the Indo-US Science and Technology Forum (IUSSTF), University of Wisconsin-Madison.
10 AM Tue 20-Feb Genomics, Computing, Economics Harvard Biophysics 101 (MIT-OCW Health Sciences & Technology 508)MIT-OCW Health Sciences & Technology 508.
FBA (1) Author: Tõnis Aaviksaar TALLINN 2006 CCFFT.
Metabolic pathway alteration, regulation and control (3) Xi Wang 01/29/2013 Spring 2013 BsysE 595 Biosystems Engineering for Fuels and Chemicals.
L 7: Linear Systems and Metabolic Networks. Linear Equations Form System.
Purpose of the Experiment  Fluxes in central carbon metabolism of a genetically engineered, riboflavin-producing Bacillus subtilis strain were investigated.
20. Lecture WS 2006/07Bioinformatics III1 V20 Extreme Pathways introduced into metabolic analysis by the lab of Bernard Palsson (Dept. of Bioengineering,
Bioinformatics III 1 V13 Graph connectivity – Metabolic networks In the first half of this lecture section, we use the theory of network flows to give.
1 Optimization Techniques Constrained Optimization by Linear Programming updated NTU SY-521-N SMU EMIS 5300/7300 Systems Analysis Methods Dr.
Metabolic Flux Analysis by MATLAB Xueyang Feng Dept. of Energy, Environmental & Chemical Engineering Washington University in St. Louis.
Essence of Metabolic Engineering
Properties of the Steady State. Sensitivity Analysis “Metabolic Control Analysis” Flux and Concentation Control Coefficients:
Project 2 Flux Balance Analysis of Mitochondria Energy Metabolism Suresh Gudimetla Salil Pathare.
Bioinformatics III 1 V14 extreme pathways A torch is directed at an open door and shines into a dark room... What area is lighted ? Instead of marking.
V15 Flux Balance Analysis – Extreme Pathways
BT8118 – Adv. Topics in Systems Biology
BT8118 – Adv. Topics in Systems Biology
Structural analysis of metabolic network models
V19 Metabolic Networks - Overview
Estimating Networks With Jumps
Emerging Frontiers of Science Information
System Biology ISA5101 Final Project
V14 extreme pathways / flux balance analysis
Linear Programming I: Simplex method
Uniform Sampling of Steady-State Flux Spaces: Means to Design Experiments and to Interpret Enzymopathies  Nathan D. Price, Jan Schellenberger, Bernhard.
BT8118 – Adv. Topics in Systems Biology
The Convex Basis of the Left Null Space of the Stoichiometric Matrix Leads to the Definition of Metabolically Meaningful Pools  Iman Famili, Bernhard.
MENTOS: A Statistical Thermodynamic Approach for Modeling Metabolism
BT8118 – Adv. Topics in Systems Biology
Presentation transcript:

Lets begin constructing the model… Step (I) - Definitions We begin with a very simple imaginary metabolic network represented as a directed graph: Vertex - substrate/metabolite concentration. Edge - flux (conversion mediated by enzymes of one substrate into the other) Internal flux edge External flux edge How do we define a biologically significant system boundary?

(II) - Dynamic mass balance Stoichiometry Matrix Flux vector Concentration vector

(II) - Dynamic mass balance Stoichiometry Matrix Flux vector Concentration vector Problem … V=V(k1, k2,k3…) is actually a function of concentration as well as several kinetic parameters. it is very difficult determine kinetic parameters experimentally. Consequently there is not enough kinetic information in the literature to construct the model. Solution ! In order to identify invariant characteristics of the network we assume the network is at steady state.

(III) - Dynamic mass balance at steady state 1.What does “steady state” mean? 2. Is it biologically justifiable to assume it? 3. Does it limit the predictive power of our model? 4. Most important question… “The steady state approximation is generally valid because of fast equilibration of metabolite concentrations (seconds) with respect to the time scale of genetic regulation (minutes)” – Segre 2002 Yes…

4. Why does the steady state assumption help us solve our problem? Steady state assumption

(VI) adding constraints Constraints on internal fluxes: Constraints on external fluxes: Source  Sink  Sink/source  is unconstrained In other words flux going into the system is considered negative while flux leaving the system is considered positive. Remark: later on we will impose further constraints both on the internal flux as well as the external flux…

(V) Flux cone and metabolic capabilities Observation: the number of reactions considerably exceeds the number of metabolites The S matrix will have more columns than rows The null space of viable solutions to our linear set of equations contains an infinite number of solutions. “The solution space for any system of linear homogeneous equations and inequalities is a convex polyhedral cone.” - Schilling 2000 C Our flux cone contains all the points of the null space with non negative coordinates (besides exchange fluxes that are constrained to be negative or unconstrained) What about the constraints?

(V) Flux cone and metabolic capabilities What is the significance of the flux cone? It defines what the network can do and cannot do! Each point in this cone represents a flux distribution in which the system can operate at steady state. The answers to the following questions (and many more) are found within this cone: what are the building blocks that the network can manufacture? how efficient is energy conversion? Where is the critical links in the system?

Lets look at a specific vector v’ : Example Is v inside the flux cone? Easy to check… 1. Does v fulfill constraints? 2. Is v in the null space of Sv=0 ?

Predicting the E.coli optimal growth Ibarra et al. Escherichia coli k-12 undergoes adaptive evolution to achiev in silico predicted optimal growth. Nature Daniel Segre`, Dennis Vitkup, and George M. Church. Analysis of optimality in natural and perturbed metabolic networks. PNAS, vol. 99, Edwards et al. Characterizing the metabolic phenotype. A phenotype phase plan. Biotechnology and bioengineering Kenethh et al. Advances in flux balance analysis. Current Opinion in Biotechnology Schillling et. Al Combining pathway analysis with flux balance analysis for the comprehensive study of metabolic systems. Biotechnology and bioengineering, 2001.

Last lecture - a short reminder… What is the biological interpretation of any point in the flux cone ?

(I) Narrowing the steady state flux cone The steady state flux cone contains an infinite flux distributions! Only a small portion of them is physiologically feasible. More constraints on the external fluxes. These depend on factors as: Organism Environment and accessibility substrates maximum rates of diffusion mediated transport Etc…

(II) Calculating optimal flux distribution The constrained flux cone in E.coli contains ~10^6 (Schilling 2001) How can we identify a “biologically meaningful” flux? Assumption … the metabolic network is optimized with respect to a certain objective function Z. Z will be a linear function. Later, we will deal with how exactly to choose Z

Minimize/Maximize S.T + inequality constraints What we want to do is find the vector v in the flux cone which maximizes Z. This optimization problem is a classical linear programming (LP) problem that can be solved using the simplex algorithm. W. Wiechert. Journal of biotechnology(2002) …this can be can formulated as an optimization problem:

(III) How to choose the objective function Z We want to choose a Z that is biologically meaningful. Reasonable options could be: 1. Z: Cellular growth (maximization) 2. Z: Particular metabolite engineering (maximization) 3. Z: Energy consumption (minimization) We want a v that: (A) Resides in side the cone. (B) maximizes Z=B+D+2E. Example: cellular growth is correlated with the production of B,D and 2E.

1. “It has been shown that under rich growth conditions (i.e. no lack of phosphate and nitrogen), E. Coli grows in a stoichiometrically optimal manner.” (Schilling 2001, Edwards 1994) We shall use Z which reflects: Cellular Growth (III) How to choose the objective function Z 2. “It is reasonable to hypothesize that unicellular organisms have evolved toward maximal growth performance.” (Segre, 2002.)

What happens to the metabolism in the case of a mutation/genetically engineered bacteria? What happens in terms of the flux cone? 0 0

Bibliography [1] Daniel Segre`, Dennis Vitkup, and George M. Church. Analysis of optimality in natural and perturbed metabolic networks. PNAS, vol. 99, [2] C. H. Schilling, D. Letscher and Bernhard Palsson. Theory for the Systemic Definition of Metabolic Pathways and their use in Interpreting Metabolic Function from a Pathway-Oriented Perspective. J. theor. Biol. (2000) [3] Schillling et. Al Combining pathway analysis with flux balance analysis for the comprehensive study of metabolic systems. Biotechnology and bioengineering, [4] Edwards et al Characterizing the metabolic phenotype” A phenotype phase plan. Biotechnology and bioengineering [5] Kenethh et al. Advances in flux balance analysis. Current Opinion in Biotechnology. [6] Ibarra et al. Escherichia coli k-12 undergoes adaptive evolution to achiev in silico predicted optimal growth. Nature [7] W. Wiechert. Modeling and simulation: tools for metabolic engineering. Journal of biotechnology(2002) [8] Cornish-Bowden. From genome to cellular phenotype- a role for meatbolic flux analysis? Nature biotechnology, vol 18, [9] Schuster et al. Detection of elelmtary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. TIBTECH 1999 [10] J. Papin, Nathan D Price, B. Palsson. Extreme pathway lengths and reaction participation in genome scale metabolic networks. Genome research, [11] Stelling eta l. Metabolic netwrok structure determines key aspects of functionality and regulation. Nature [12] A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks.

Thanks…