In order for high-ability students to feel academically challenged in secondary schools, many look to Advanced Placement courses. Success in an AP classroom.

Slides:



Advertisements
Similar presentations
In order for high-ability students to feel academically challenged in secondary schools, many look to Advanced Placement courses. Success in an AP classroom.
Advertisements

Equilibrium and Le Chatelier’s Principle
Le Châtelier’s Principle
Equilibrium Unit 10 1.
ADVANCED PLACEMENT CHEMISTRY EQUILIBRIUM. Chemical equilibrium * state where concentrations of products and reactants remain constant *equilibrium is.
Chemical equilibrium is a state in which the forward and reverse reactions balance each other because they take place at equal rates. Rateforward reaction.
Reversible Reactions and Equilibrium
CHAPTER 14 CHEMICAL EQUILIBRIUM
Reaction Rates & Equilibrium
Chemical equilibrium – 2 opposing reactions occur simultaneously at the same rate ⇌ D E E D when the rate D E is equal to rate E D,
Chemical Equilibrium - General Concepts (Ch. 14)
AP Chapter 15.  Chemical Equilibrium occurs when opposing reactions are proceeding at equal rates.  It results in the formation of an equilibrium mixture.
A.P. Chemistry Chapter 13 Equilibrium Equilibrium is not static, but is a highly dynamic state. At the macro level everything appears to have stopped.
Equilibrium Chemistry 30.
Chapter 13 Equilibrium. Unit Essential Question Z How do equilibrium reactions compare to other reactions?
Author: J R Reid Equilibrium - Introduction Equilibrium The Equilibrium Constant Factors Affecting Equilibrium.
OBJECTIVES Describe how the amounts of reactants and products change in a chemical system at equilibrium.
Kinetics and Equilibrium. Kinetics Kinetics is the part of chemistry that examines the rates of chemical reactions. Collision theory is the concept of.
1 CHEMICAL EQUILIBRIUM. Chemical Equilibrium Chemical Reactions Types; What is equilibrium? Expressions for equilibrium constants, K c ; Calculating K.
Chapter 16: Chemical Equilibrium- General Concepts WHAT IS EQUILIBRIUM?
Equilibrium Chapter 16. Reversible Reactions – A chemical reaction in which the products can regenerate the original reactants. Reversible Reactions –
Chemical Equilibrium A Balancing Act.
1 General Concepts of Chemical Equilibrium. 2 In this chapter you will be introduced to basic equilibrium concepts and related calculations. The type.
© 2013 Pearson Education, Inc. Chapter 9, Section 1 General, Organic, and Biological Chemistry Fourth Edition Karen Timberlake Chapter 9 © 2013 Pearson.
Kinetics and Equilibrium Exam Study Notes.  Kinetics is the measuring of reaction rates.  Reaction rate is how fast a reaction occurs.  A common measure.
General, Organic, and Biological Chemistry Copyright © 2010 Pearson Education, Inc. 1 Collision Theory of Reactions A chemical reaction occurs when  collisions.
Jeopardy $100 Equilibrium Constants Le Chatelier’s Principle Reaction Quotients Miscellaneous $200 $300 $400 $500 $400 $300 $200 $100 $500 $400 $300 $200.
Chemical Equilibrium 4/24/2017.
Chemical Kinetics Branch of chemistry concerned with the rates and mechanisms of chemical reactions.
GOES WITH CHAPTER 17: SILBERBERG; PRINCIPLES OF GENERAL CHEMISTRY AP CHEMISTRY MRS. LAURA PECK Topic 12: Equilibrium 1.
Reversible Reactions Reactions are spontaneous if  G is negative. If  G is positive the reaction happens in the opposite direction. 2H 2 (g) + O 2 (g)
Chapter 13.  Equilibrium is not static. It is a highly dynamic state.  Macro level reaction appears to have stopped  Molecular level frantic activity.
Kinetics, Thermodynamics and Equilibrium Regents Chemistry.
Le Chatelier’s Principle  A reaction at equilibrium, when “stressed,” will react to relieve the stress.  (If you mess with it, it will work to return.
Chemical Equilibrium. n In systems that are in equilibrium, reverse processes are happening at the same time and at the same rate. n Rate forward = Rate.
Chapter 12: Chemical Equilibrium. The Dynamic Nature of Equilibrium A. What is equilibrium? 1. Definition a state of balance; no net change in a dynamic.
CHEMICAL EQUILIBRIUM REVIEW. REVIEW Look at the review objectives and your notes. 1. Describe a reversible reaction.  Be sure you can describe what a.
Reaction Equilibrium Do any reactions truly go to completion??
CHEMICAL EQUILIBRIUM: occurs in a reversible reaction, when the FORWARD reaction rate equals the REVERSE reaction rate. 1) When equilibrium is established,
Chapter 14: Chemical Equilibrium CHE 124: General Chemistry II Dr. Jerome Williams, Ph.D. Saint Leo University.
CHEM 163 Chapter 17 Spring 2009 Instructor: Alissa Agnello 1.
Reaction Rates & Equilibrium Unit 13 - Chapter 18.
CHE1102, Chapter 14 Learn, 1 Chapter 15 Chemical Equilibrium.
Kinetics and Equilibrium. Kinetics Kinetics is the part of chemistry that examines the rates of chemical reactions. Collision theory is the concept of.
Equilibrium The Concept of Equilibrium Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate. © 2012 Pearson Education,
Collision Theory  Collision theory is a theory proposed independently by Max Trautz in 1916 and William Lewis in 1918, that qualitatively explains how.
Chemical Equilibrium Chapter 13 4 out of 75 m/c Free Response: Required Every Year.
Chapter 13 Chemical Equilibrium Reversible Reactions REACTANTS react to form products. PRODUCTS then react to form reactants. BOTH reactions occur: forward.
Chemical Equilibrium Reactants Products Reactants Products As the time increases… [Reactants] decrease, so the rate of forward reaction decreases; [Products]
Reaction Rates and Equilibrium Chapter 19 C.Smith.
Chemical Equilibrium. Unit Objectives  Define chemical equilibrium.  Explain the nature of the equilibrium constant.  Write chemical equilibrium expressions.
 Chemical Equilibrium occurs when opposing reactions are proceeding at equal rates.  When the forward reaction equals the reverse reaction.  It results.
13.1 EQUILIBRIUM CONDITION CHEMICAL EQUILIBRIUM The state where the concentrations of all reactants and products remain constant with time. On the molecular.
Chapter 14 Lecture © 2014 Pearson Education, Inc. Sherril Soman Grand Valley State University Lecture Presentation Chapter 14 Chemical Equilibrium.
Chemical Equilibrium Chapter 18.
CHEMICAL EQUILIBRIUM 3/12/07
Topic 7- Equilibrium.
Chemical equilibrium Chapter 18
Chemical equilibrium Chapter 18
or How Chemical Reactions Occur
Chemical equilibrium Chapter 18
*Le Châtelier’s Principle and Equilibrium
Basic Equilibrium Principles 18.1
Chemical Equilibria (Gaseous Systems)
Chemical Equilibrium Equal but Opposite Reaction Rates
EQUILIBRIUM.
CHEMICAL EQUILIBRIUM 3/12/07
Chemical Equilibrium Chapter 14.
Equilibrium Chapter 19-2.
Chapter 14 Chemical Equilibrium
Presentation transcript:

In order for high-ability students to feel academically challenged in secondary schools, many look to Advanced Placement courses. Success in an AP classroom is often an indicator of success in the future. College students : 1) who have NOT taken an AP course have only a 33% chance of completing a Bachelor s Degree 2) who have completed ONE AP course have a 59% chance of completing a Bachelor s Degree 3) who have completed TWO or MORE AP courses have a 76% chance of completing a Bachelor s Degree --Statistics from Answers in the Tool Box: Academic Intensity, Attendance Patterns, and Bachelor s AttainmentAttainment

AP* CHEMISTRY GENERAL EQUILIBRIUM Kc, Kp, and Le Châtelier

Objective To review the student on the concepts, processes and problem solving strategies necessary to successfully answer questions over general chemical equilibrium. Standards The topic of general equilibrium is addressed in the topic outline of the College Board AP Chemistry Course Description Guide as described below. III Reactions C. Equilibrium 1. Concept of dynamic equilibrium, physical and chemical; Le Chateliers principle; equilibrium constants 2. Quantitative treatment a. Equilibrium constants for gaseous reactions: Kp, Kc

AP Chemistry Exam Connections The topic of equilibrium is tested every year on the multiple choice and is always the focus of question one on the free response portions of the exam. The list below identifies free response questions that have been previously asked over general equilibrium. These questions are available from the College Board and can be downloaded free of charge from AP Central Free Response Questions 2008 Question B Question Question B Question B Question B Question B Question 1

What I Absolutely Have to Know to Survive the AP Exam The following might indicate the question deals with equilibrium: Initial concentrations and/or pressures; original concentration and/or pressures; placed in a container; at equilibrium; LeChâteliers principle (reaction shift direction); K; Kc ; Kp; equilibrium concentration; percent dissociation; equilibrium expression; law of mass action; change in concentration… Equilibrium: Its Dynamic! Equilibrium is the state where the concentrations of all reactants and products remain constant with time. Reactions are reversible. This is indicated by double arrows… Dynamic means that the reaction is proceeding in the forward and in the reverse directions; even when equilibrium is established (i.e. the concentration of the reactants and products remain constant) the forward and reverse reactions continue. The reaction concentrations do not change because the rate of the forward and reverse reactions are equal (remember Kinetics?).

The Equilibrium Position: Where is it? Reactions that reach equilibrium do so with: The concentration of reactants greater than products the reaction lies far to the left or the reaction favors reactants and the equilibrium constant K is less than 1. The concentration of products greater than reactants the reaction lies far to the right or the reaction favors products and the equilibrium constant K is greater than 1. The concentrations of reactants and products close to equal is a rare situation with neither reactants or propucts favored and the K = 1.

Factors that affect the equilibrium position: Initial concentrations of reactants: more collisions, more effective collision, possibly more products i.e. a faster reaction (kinetics again) Energy: Energies of the reactants and products (favor minimum energy – thermodynamics, enthalpy) Order/disorder of reactants and products (favor maximum disorder – thermodynamics, enthalpy) Really a combination of all theses issues…

The Equilibrium Expression: Law of Mass Action! The equilibrium expression: ratio of concentration/pressure of products to reactants at the equilibrium position Regardless of the initial conditions at a given temperature a reaction will reach its equilibrium position with the same ratio of products to reactants, i.e. the ratio will be the same… It is temperature dependent change the temperature; change the ratio… i.e. the reaction reaches equilibrium at a different position For the reaction: aA + bB cC + dD

Calculating with the Equilibrium Expression You MUST have a balanced equation. If the amounts are given in moles BE WARY you must convert to M Write the Equilibrium Constant Expression for Kc or Kp Set up a RICE TABLE R = Balanced Reaction I = Initial concentrations If nothing about the products are mentioned then the reaction hasnt started so there are no initial concentrations for products; if they are put them in but you are in the land of Q (more on that later) C = Change in concentration If the products are initially zero (0) then the reactants loose () and the products gain (+); if there are products present initially as well as reactants then you must enter the land of Q to determine who gains (+) and who loses (). Remember: Everything Changes stoichiometrically!!!! E = Equilibrium concentrations These are concentrations (pressures) of all species at equilibrium

Hints: Look for very small K values (where K < or M = 1000×K) the x in the change may be negligible and the need for the quadratic equation is no more…. If "x" is necessary, then see if the problem may be a perfect square and thus, ease the steps of solving. If none of the initial concentrations are zero, then Q must be calculated first to determine the direction of the shift (who gains and loses) before calculating the equilibrium concentrations. Watch for being given one of the equilibrium concentrations in the problem. Is so there is no need for (x) because there is no unknown; you can work backwards. Everything Changes stoichiometrically!!!!

Le Châteliers Principle Le Châteliers Principle states that if a stress is applied to a system at equilibrium, the position of the equilibrium will shift in the direction which best reduces the stress. What to watch for… Shifts occur to reestablish equilibrium positions. Think about Q! Temperature – exothermic think of heat is a product; endothermic think of heat is a reactant. Adding or removing a reagent – shift tries to reestablish K. If you remove it the reaction shifts to replace it; if you add it, the reaction shifts to get rid of it

Le Châteliers Principle cont. Pressure – Increasing pressure favors a shift to the side with the fewest # of moles of gas; the converse is true. Volume same effect as pressure; remember Boyles Law… Pressure and Volume are inversely related, thus increasing the volume is the same as decreasing the pressure and vice versa… Catalysts – NO EFFECT on K; just gets to equilibrium faster (Kinetics moment)! REMEMBER nothing but a change in temperature will change the VALUE of K

Be sure to leave out solids and liquids and realize that changing their amounts cannot affect the position of the equilibrium since they are not variables that are included in the equilibrium expression. Manipulating K for different versions of the same reaction: reverse rxn = 1/K; double coefficients = K2; ½ the coefficients = K 1/2 If K is >1 then reaction favors products b/c K ratio is top heavy If K is <1 then reaction favors reactants b/c K ratio is bottom heavy LeChâteliers Principle: If a system at equilibrium is stressed the system will shift direction until equilibrium is re-established. This will result in different concentration/pressure values for the individual members of the reaction but the VALUE of K will not change without temperature.

Potential Pitfalls No units on K you finally get to ignore units just dont do it with other stuff!!!! LeChâteliers tricky questions: Only temperature will change the value of K; no shifting can affect value of K Amounts of solids and liquids that are not in the K expression can not change position or size of K Adding an inert gas (He, Ar, Ne…) to a gaseous equilibrium has NO EFFECT since it is not represented in the K expression. In general equilibrium dont forget that these equations may have 1:2 ratios [i.e. (2x)2 terms] Neglecting the –x will be OK. You should never have to use the quadratic equation on the AP exam.

decrease

D A decrease in the volume of the container (or an increase in the pressure in the container) will shift the reaction to favor fewer moles of gases, in this case the reactants. Shifting to form more reactants will increase the number of moles of SO 3 gas.

B

D When CH 4 (g) is removed, the reaction will shift to the left to re-establish equilibrium. If the reaction shifts to the left, both H 2 and CO are being used thus the number of moles of each decreases and more heat (energy) and water vapor are produced. (A) I only(B) II only (C) I and III only (D) II and III only (E) I, II, and III

D Removing reactant molecules from the mixture will cause the reaction to shift to produce more reactants, using products, until the system reestablishes equilibrium. This will cause the pressure of the hydrogen gas to decrease. Since the temperature of the reaction did not change the equilibrium constant K will not change. (A) I only (B) II only (C) III only (D) I and III only (E) II and III only NEW

B A change in volume will affect the equilibrium position only if there are more/less moles of gaseous reactants/products. Since the number of moles of reactant gas are the same as the number of moles of product gas then the equilibrium position does not change, and the concentration of all species remains the same. (A) I only(B) II only (C) I and III only (D) III and IV only (E) II and IV only

D The equation in question has been reversed and multiplied by ½, thus the equilibrium constant will be the reciprocal (because it was reversed) raised to the 1/2 power, or square root (because it was multiplied by 1/2).

C Adding a reactant causes the equilibrium to shift to relieve the stress causing more products to form.

A The addition of a noble (inert) gas or a solid or a pure liquid has no effect on the equilibrium concentrations since it is not part of the K expression.