Chapter 12: Basic option theory

Slides:



Advertisements
Similar presentations
Fi8000 Option Valuation I Milind Shrikhande.
Advertisements

CHAPTER NINETEEN OPTIONS. TYPES OF OPTION CONTRACTS n WHAT IS AN OPTION? Definition: a type of contract between two investors where one grants the other.
Fi8000 Basics of Options: Calls, Puts
Chapter 22 - Options. 2 Options §If you have an option, then you have the right to do something. I.e., you can make a decision or take some action.
1 Chapter 15 Options 2 Learning Objectives & Agenda  Understand what are call and put options.  Understand what are options contracts and how they.
Class Business Upcoming Groupwork Course Evaluations.
Financial Innovation & Product Design II Dr. Helmut Elsinger « Options, Futures and Other Derivatives », John Hull, Chapter 22 BIART Sébastien The Standard.
Valuation of Financial Options Ahmad Alanani Canadian Undergraduate Mathematics Conference 2005.
Options Chapter 2.5 Chapter 15.
Fi8000 Option Valuation II Milind Shrikhande. Valuation of Options ☺Arbitrage Restrictions on the Values of Options ☺Quantitative Pricing Models ☺Binomial.
Chapter 14 The Black-Scholes-Merton Model
Options Week 7. What is a derivative asset? Any asset that “derives” its value from another underlying asset is called a derivative asset. The underlying.
Investment Science D.G. Luenberger
Spreads  A spread is a combination of a put and a call with different exercise prices.  Suppose that an investor buys simultaneously a 3-month put option.
 Financial Option  A contract that gives its owner the right (but not the obligation) to purchase or sell an asset at a fixed price as some future date.
Financial options1 From financial options to real options 2. Financial options Prof. André Farber Solvay Business School ESCP March 10,2000.
Options and Derivatives For 9.220, Term 1, 2002/03 02_Lecture17 & 18.ppt Student Version.
Chapter 19 Options. Define options and discuss why they are used. Describe how options work and give some basic strategies. Explain the valuation of options.
CHAPTER 21 Option Valuation. Intrinsic value - profit that could be made if the option was immediately exercised – Call: stock price - exercise price.
Computational Finance 1/47 Derivative Securities Forwards and Options 381 Computational Finance Imperial College London PERTEMUAN
Vicentiu Covrig 1 Options Options (Chapter 18 Hirschey and Nofsinger)
Days 8 & 9 discussion: Continuation of binomial model and some applications FIN 441 Prof. Rogers Fall 2011.
Options An Introduction to Derivative Securities.
Pricing an Option The Binomial Tree. Review of last class Use of arbitrage pricing: if two portfolios give the same payoff at some future date, then they.
Drake DRAKE UNIVERSITY Fin 288 Valuing Options Using Binomial Trees.
© 2002 South-Western Publishing 1 Chapter 5 Option Pricing.
5.1 Option pricing: pre-analytics Lecture Notation c : European call option price p :European put option price S 0 :Stock price today X :Strike.
Days 8 & 9 discussion: Continuation of binomial model and some applications FIN 441 Prof. Rogers Spring 2011.
Théorie Financière Financial Options Professeur André Farber.
Corporate Finance Options Prof. André Farber SOLVAY BUSINESS SCHOOL UNIVERSITÉ LIBRE DE BRUXELLES.
Chapter 121 CHAPTER 12 AN OPTIONS PRIMER In this chapter, we provide an introduction to options. This chapter is organized into the following sections:
Option Pricing Approaches
Investment Analysis and Portfolio Management
Principles of Option Pricing MB 76. Outline  Minimum values of calls and puts  Maximum values of calls and puts  Values of calls and puts at expiration.
Class 5 Option Contracts. Options n A call option is a contract that gives the buyer the right, but not the obligation, to buy the underlying security.
Chapter 20 Option Valuation and Strategies. Portfolio 1 – Buy a call option – Write a put option (same x and t as the call option) n What is the potential.
8 - 1 Financial options Black-Scholes Option Pricing Model CHAPTER 8 Financial Options and Their Valuation.
© 2004 South-Western Publishing 1 Chapter 6 The Black-Scholes Option Pricing Model.
Put/Call Parity and Binomial Model (McDonald, Chapters 3, 5, 10)
Introduction to options
Financial Options: Introduction. Option Basics A stock option is a derivative security, because the value of the option is “derived” from the value of.
Investment Analysis and Portfolio Management Lecture 10 Gareth Myles.
1 Options Option Basics Option strategies Put-call parity Binomial option pricing Black-Scholes Model.
Professor XXXXX Course Name / # © 2007 Thomson South-Western Chapter 18 Options Basics.
Essentials of Investments © 2001 The McGraw-Hill Companies, Inc. All rights reserved. Fourth Edition Irwin / McGraw-Hill Bodie Kane Marcus 1 Chapter 16.
What is an Option? An option gives one party the right, but NOT THE OBLIGATION to perform some specific investment action at a future date and for a defined.
ADAPTED FOR THE SECOND CANADIAN EDITION BY: THEORY & PRACTICE JIMMY WANG LAURENTIAN UNIVERSITY FINANCIAL MANAGEMENT.
Chapter 10: Options Markets Tuesday March 22, 2011 By Josh Pickrell.
INVESTMENTS | BODIE, KANE, MARCUS Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin CHAPTER 18 Option Valuation.
Fi8000 Valuation of Financial Assets Spring Semester 2010 Dr. Isabel Tkatch Assistant Professor of Finance.
Black Scholes Option Pricing Model Finance (Derivative Securities) 312 Tuesday, 10 October 2006 Readings: Chapter 12.
Intermediate Investments F3031 Option Pricing There are two primary methods we will examine to determine how options are priced –Binomial Option Pricing.
Options An Introduction to Derivative Securities.
Overview of Monday, October 15 discussion: Binomial model FIN 441 Prof. Rogers.
Introduction Finance is sometimes called “the study of arbitrage”
© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible Web site, in whole or in part.
Option Pricing Models: The Black-Scholes-Merton Model aka Black – Scholes Option Pricing Model (BSOPM)
1 Chapter 16 Options Markets u Derivatives are simply a class of securities whose prices are determined from the prices of other (underlying) assets u.
Index, Currency and Futures Options Finance (Derivative Securities) 312 Tuesday, 24 October 2006 Readings: Chapters 13 & 14.
Option Valuation.
Chapter 11 Options and Other Derivative Securities.
1 1 Ch20&21 – MBA 566 Options Option Basics Option strategies Put-call parity Binomial option pricing Black-Scholes Model.
CHAPTER NINETEEN OPTIONS. TYPES OF OPTION CONTRACTS n WHAT IS AN OPTION? Definition: a type of contract between two investors where one grants the other.
Properties of Stock Options
Introduction to Derivatives
MTH 105. FINANCIAL MARKETS What is a Financial market: - A financial market is a mechanism that allows people to trade financial security. Transactions.
© 2013 Pearson Education, Inc., publishing as Prentice Hall. All rights reserved.10-1 The Binomial Solution How do we find a replicating portfolio consisting.
© 2013 Pearson Education, Inc., publishing as Prentice Hall. All rights reserved.10-1 Properties of Option Prices (cont’d) Early exercise for American.
Introduction to Options. Option – Definition An option is a contract that gives the holder the right but not the obligation to buy or sell a defined asset.
Presentation transcript:

Chapter 12: Basic option theory Investment Science D.G. Luenberger

Before we talk about options This course so far has dealt with deterministic cash flows and single-period random cash flows. Now we’d like to deal with random flows at each of several time points, i.e., multiple random cash flows. Multiple random cash flow theories are generally very difficult. Here, we’d like to focus on a special case: derivatives, i.e., those assets whose cash flows are functionally related to other assets whose price characteristics are assumed to be known. Options are an important category of derivatives.

Option, I An option is the right, but not the obligation, to buy (or sell) an underlying asset under specified terms. Usually there are a specified price, called strike price or exercise price (K), and a specified period of time, called maturity (T) or expiration date, over which the option is valid. An option is a derivative because whose cash flows are related to the cash flows of the underlying asset. If the option holder actually does buy and sell the underlying asset, the option holder is said to exercise the option. The market price of an option is called premium.

Option, II An option that gives the right to purchase (sell) the underlying asset is called a call (put) option. An American option allows exercise at any time before and including the expiration date. An European option allows exercise only on the expiration date. In this course, we will focus on European options because their pricing is easier. The underlying assets of options can be financial securities, such as IBM shares or S&P 100 Index, or physical assets, such as wheat or corn.

Option, III Many options are traded on open markets. Thus, their premiums are established in the market and observable. Options are wonderful instruments for managing business and investment risk, i.e., hedging. Options can be particularly speculative because of their built-in leverages. For example, if you are very sure that IBM’s share price will go up, betting $1 on IBM call options may generate a much higher return than betting $1 on IBM shares.

Notation S: the price of the underlying asset. C: the value of the call option. P: the value of the put option.

Value of call option at expiration

Value of put option at expiration

Value of option at expiration The value of the call at expiration: C = max (0, S – K). The call option is in the money, at the money, or out of money, depending on whether S > K, S = K, or S < K, respectively. The value of the put at expiration: P = max (0, K – S). The put option is in the money, at the money, or out of money, depending on whether S < K, S = K, or S > K, respectively.

11.1 Binomial model, PP. 297-299 A binomial model can be a single-period model or a multiple-period model. A basic period length can be a week, a month, a year, etc. If the price of an asset is known at the beginning of a period, say S, the price of the asst at the end of the period is one of only two possible values, S*u and S*d, where u > 1 > d > 0. S*u (S*d) is expected to happen with probability p (1 – p). That is, we have uncertainty, but in the form of two possible values.

Binomial model

Calibration, I Binomial models provide an uncertain structure for us to model the underlying asset’s price dynamics. This modeling is necessary because option value is a function of the underlying asset’s price dynamics. Thus, to obtain accurate valuation for an option, we need to do a good job on modeling the underlying asset’s price dynamics. That is, we need to choose binomial parameters, i.e., p, u, and d, carefully such that the binomial-based price dynamics is consistent with the observable (historical) price characteristics, e.g., average return and standard deviation, of the underlying asset.

Calibration, II Let v be the expected (average) annual return of the underlying asset, v = E [ln(ST /S0 )], say 12%. Let  be the yearly standard deviation of the underlying asset, 2 = var [ln(ST /S0 )], say 15%. Note that 12% return and 15% standard deviation are about the kind of numbers that you would expect from a typical S&P 500 stock. Now we need to define the period length relative to a year. If we define a period as a week, a period length of t is 1/52.

Calibration, III Then, the binomial parameters can be selected as: p = ½ + ½ *(v / )* (t)1/2. u = e * (t)1/2. d = 1/u. e is exponential and has a value of 2.7183. With these choices, the binomial model will closely match the values of v and  (see pp. 313-315 for the proof).

Calibration, IV

1-period binomial option theory, I We assume that it is possible to borrow or lend at the risk-free rate, r. Let R = 1 + r, and u > R > d. Suppose that there is a call option on the underlying asset with strike price K and expiration at the end of the single period. Let Cu (Cd) be the value of the call at expiration.

3 related lattices

No-arbitrage The key to price the call option at time 0 is to form a portfolio at time 0: (1) the portfolio consists of the underlying asset and the risk-free asset, (2) the portfolio’s value at time 1 is equal to the value of the call at time 1, regardless whether it is up or down. This portfolio is called a replicating portfolio: x dollar worth of the underlying asset and b dollar worth of the risk-free asset. No-arbitrage: because the replicating portfolio and the call yield the value at time 1 regardless what might happen, the value of the replicating portfolio and the call at time 0 must be the same. That is, x + b = C.

Outcome matching The value of the replicating portfolio equals to the value of the call at time 1 when it is up: u * x + R * b = Cu. The value of the replicating portfolio equals to the value of the call at time 1 when it is down: d * x + R * b = Cd. Solve for x and b from the two equations.

1-period binomial Solution x = (Cu – Cd) / (u – d). b = (u * Cd – d * Cu) / (R * (u – d)). Based on no-arbitrage, we know that C = x + b. C = (Cu – Cd) / (u – d) + (u * Cd – d * Cu) / (R * (u – d)). After some algebras, we have C = (1/R) * [q * Cu + (1 – q) * Cd], where q = (R – d) / (u – d). Note that p is not in the pricing equation because no trade-off among probabilistic events is made.

1-month IBM call option, I Consider IBM with a volatility of its logarithm of  = 20%. The current price of IBM is $62. A call option on IBM has an expiration date 1 month from now and a strike price of $60. The current interest rate is 10%, compounded monthly. Suppose that IBM will not pay dividends.

1-month IBM call option, II

When no information about v and  If we have a primitive binomial problem in which we have no information on expected return and standard deviation, we then must know the two possible outcomes. Example: suppose the market price of a stock is $50. The two possible outcomes for the stock price is either $60 or $40 in a year. A call option with a one-year expiration and a $50 exercise price. Interest rate is 5%.

Duplicating portfolio We need to duplicate the call with the strategy of buying stocks and borrowing monies. The duplicating strategy is to buy ½ share of the stock and borrow $19.05. Why this particular combination? We will talk about this later.

When the stock price is up When the stock price is up, the payoff of buying a call is $10 ($60 - $50). When the stock price is up, the payoff the duplicating strategy is also $10. The sum of the following two positions is $10 ($30 - $20): (1) buying ½ share: ½ * $60 = $30, and (2) borrowing $19.05 at 5%: -$19.05 * 1.05 = -$20.

When the stock price is down When the stock price is down, the payoff of buying a call is $0. When the stock price is down, the payoff the duplicating strategy is also $0. The sum of the following two positions is $0 ($20 - $20): (1) buying ½ share: ½ * $40 = $20, and (2) borrowing $19.05 at 5%: -$19.05 * 1.05 = -$20.

No arbitrage The call and the duplicating strategy generate identical payoffs at the end of the year. No arbitrage principle implies that the current market price of the call equals to the current market price of the duplicating position. The market price of the duplicating position is $5.95 ($25 - $19.05). Buying ½ share costs $25 (1/2 * $50). The call price is $5.95.

Why ½ share? The duplicating portfolio was given to be buying ½ share and borrowing $19.05 earlier. Why ½ share? This amount is called the delta of the call. Delta = swing of the call / swing of the stock = ($10 - $0) / ($60 - $40) = ½.

Why borrowing $19.05? Buying ½ share gives us either $30 or $20 at expiration, which is exactly $20 higher than the payoffs of the call, $10 and $0, respectively. To duplicate the position, we thus need to borrow a dollar amount such that we will need to pay back exactly $20. Given the future value is $20, the interest rate is 5%, and the number of the time period is 1, we have the present value to be $19.05 (use your financial calculator).

Multiple-period pricing The usefulness of single-period binomial pricing is that it can be applied to multiple-period problems in a straightforward manner. That is, the single period pricing, C = (1/R) * [q * Cu + (1 – q) * Cd], is repeated at every node of the lattice, starting from the final time period and working backward toward the initial time.

5-month IBM call option, I

5-month IBM call option, II

1-month vs. 5-month The call price for 1-month IBM call is $3.14. The call price for 5-month IBM call is $5.85. Holding other factors constant, the longer the maturity, the higher the call premium. The reason for this is that additional time allows for a greater chance for the stock to rise in value, increasing the final payoff of the call option. See Figure 12.3, p. 324. Along the same line of seasoning, the higher the standard deviation, the higher the call premium. You should verify this numerically.

How about put option pricing? So far, we have focused on call pricing. The reason for this is that for European options one can calculate the value of a put option, P, based on value the call option, C, when they have the same strike price and maturity. P = C – S + df * K, where df is risk-free discount factor. This relationship is called the put-call parity.

Put option pricing Consider a GM call option and a GM put option, both have 3 months to expiration and the same strike price, $35. The current price of GM shares is $37.78. The call premium is $4.25. The interest rate is 5.5%, so over 3 months, the discount factor is 0.986 (= 1 / (1 + 0.055/4). P = C – S + df * K = 4.25 – 37.78 + 0.986 * 35 = $1.00.

Options are interesting and important A combination of options can lead to a unique payoff structure that otherwise would not be possible. Options make it happen! Example: a butterfly spread, p. 325. Question: who would hold a butterfly spread?