Why this Chapter? Finding structures of new molecules synthesized is critical To get a good idea of the range of structural techniques available and how.

Slides:



Advertisements
Similar presentations
Chapter 12 Infrared Spectroscopy and Mass Spectrometry
Advertisements

I.R. Spectroscopy C.I. 6.4.
Structural Determination (IR)
Infrared Spectroscopy
Structure Determination: MS, IR, NMR (A review)
Mass Spectrometry Introduction:
17.1 Mass Spectrometry Learning Objectives:
Based on McMurry’s Organic Chemistry, 6th edition ©2003 Ronald Kluger
Structural Information
1 CHAPTER 9 Spectroscopy: the study of the interaction of energy with matter Energy applied to matter can be absorbed, emitted, cause a chemical change,
Molecular Structure and Organic Chemistry The structure of a molecule refers to the arrangement of atoms within the molecule. The structure of a molecule.
Modern techniques for structure determination of organic compounds include: Mass spectrometry Size and formula of the compound Infrared spectroscopy Functional.
Determining the Structure of an Organic Compound
Infrared Spectroscopy
What do you remember about mass spectrometry?
Determining the Structure of an Organic Compound
Understanding infrared spectroscopy
INFRARED SPECTROSCOPY (IR)
Infrared Spectroscopy
Infra Red Spectroscopy
Chapter 12 Mass Spectrometry and Infrared Spectroscopy
WM4 Instrumental analysis. The 3 key instrumental techniques How do we know that salicylic acid contains – OH and –COOH groups? Mass spectroscopy (m.s.).
KHS ChemistryUnit 3.4 Structural Analysis1 Structural Analysis 2 Adv Higher Unit 3 Topic 4 Gordon Watson Chemistry Department, Kelso High School.
Spectroscopy: IR Renee Y. Becker Valencia Community College CHM 2011.
12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy Based on McMurry’s Organic Chemistry, 7th edition.
Structure Determination by Spectroscopy Mass spectroscopy Ultraviolet-visible spectroscopy Infrared spectroscopy Nuclear magnetic resonance spectroscopy.
Chapter 2: IR Spectroscopy Paras Shah
12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy Based on McMurry’s Organic Chemistry, 6 th edition.
Infrared Spectroscopy
Spectroscopy Chemistry 3.2: Demonstrate understanding of spectroscopic data in chemistry (AS 91388)
Structure Determination: Mass Spectrometry and Infrared Spectroscopy
12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy Based on McMurry’s Organic Chemistry, 6 th edition.
Why this Chapter? Finding structures of new molecules synthesized is critical To get a good idea of the range of structural techniques available and how.
Chemistry 2412 L Dr. Sheppard
INFRA RED SPECTROSCOPY A guide for A level students KNOCKHARDY PUBLISHING.
California State University, Monterey Bay CHEM312
The Electromagnetic Spectrum
Infrared Spectroscopy (IR) Fourier Transform Infrared (FTIR)
Infrared Spectroscopy
Demonstrate understanding of spectroscopic data in chemistry Chemistry A.S internal credits.
John E. McMurry Paul D. Adams University of Arkansas Chapter 12 Structure Determination: Mass Spectrometry and Infrared.
Learning Objectives Mass spectrometry of small molecules: Magnetic-sector instruments Interpreting mass spectra Mass spectrometry of some common functional.
12. Structure Determination: Mass Spectrometry
Chapter 11 Structure Determination: Mass Spectrometry, Infrared Spectroscopy, and Ultraviolet Spectroscopy.
© 2016 Cengage Learning. All Rights Reserved. John E. McMurry Chapter 12 Structure Determination: Mass Spectrometry and.
CHAPTER 11 Alkenes; Infrared Spectroscopy and Mass Spectroscopy.
Infrared (IR) Spectroscopy for Structural Analysis Ridwan Islam.
Infra-red Spectroscopy
Determining the Structure of an Organic Compound
Learning Objectives (12.1)
INFRA RED SPECTROSCOPY
Determining the Structure of an Organic Compound
Organic Chemistry, First Edition Janice Gorzynski Smith
Determining the Structure of an Organic Compound
Ln = c E = hn Copyright © 2015 John Wiley & Sons, Inc. All rights reserved. Figure 15.2.
Introduction Spectroscopy is an analytical technique which helps determine structure. It destroys little or no sample. The amount of light absorbed by.
IR-Spectroscopy IR region Interaction of IR with molecules
Structure Determination: Mass Spectrometry and Infrared Spectroscopy
General Overview of the module and the methods
12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy Based on McMurry’s Organic Chemistry, 7th edition.
IR-Spectroscopy IR region Interaction of IR with molecules
12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy Based on McMurry’s Organic Chemistry, 7th edition.
12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy Based on McMurry’s Organic Chemistry, 7th edition.
WM4 Instrumental analysis
The Electromagnetic Spectrum
12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy Based on McMurry’s Organic Chemistry, 7th edition.
12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy Based on McMurry’s Organic Chemistry, 7th edition.
Renee Y. Becker Valencia Community College CHM 2011
INFRA RED SPECTROSCOPY
Determining the Structure of an Organic Compound
Presentation transcript:

Chapter 12 Structure Determination: Mass Spectrometry and Infrared Spectroscopy

Why this Chapter? Finding structures of new molecules synthesized is critical To get a good idea of the range of structural techniques available and how they should be used

12.1 Mass Spectrometry of Small Molecules: Magnetic-Sector Instruments Measures molecular weight Sample vaporized and subjected to bombardment by electrons that remove an electron Creates a cation radical Bonds in cation radicals begin to break (fragment) Charge to mass ratio is measured

The Mass Spectrum Plot mass of ions (m/z) (x-axis) versus the intensity of the signal (roughly corresponding to the number of ions) (y-axis) Tallest peak is base peak (100%) Other peaks listed as the % of that peak Peak that corresponds to the unfragmented radical cation is parent peak or molecular ion (M+)

Other Mass Spectral Features If parent ion not present due to electron bombardment causing breakdown, “softer” methods such as chemical ionization are used Peaks above the molecular weight appear as a result of naturally occurring heavier isotopes in the sample (M+1) from 13C that is randomly present

Interpreting Mass-Spectral Fragmentation Patterns The way molecular ions break down can produce characteristic fragments that help in identification Serves as a “fingerprint” for comparison with known materials in analysis (used in forensics) Positive charge goes to fragments that best can stabilize it

Mass Spectral Fragmentation of Hexane Hexane (m/z = 86 for parent) has peaks at m/z = 71, 57, 43, 29

12.3 Mass Spectrometry of Some Common Functional Groups Alcohols: Alcohols undergo -cleavage (at the bond next to the C-OH) as well as loss of H-OH to give C=C

Mass Spectral Cleavage of Amines Amines undergo -cleavage, generating radicals

Fragmentation of Carbonyl Compounds A C-H that is three atoms away leads to an internal transfer of a proton to the C=O, called the McLafferty rearrangement Carbonyl compounds can also undergo  cleavage

12.5 Spectroscopy and the Electromagnetic Spectrum Radiant energy is proportional to its frequency (cycles/s = Hz) as a wave (Amplitude is its height) Different types are classified by frequency or wavelength ranges

Absorption Spectra An organic compound exposed to electromagnetic radiation can absorb energy of only certain wavelengths (unit of energy) Transmits energy of other wavelengths. Changing wavelengths to determine which are absorbed and which are transmitted produces an absorption spectrum

12.6 Infrared Spectroscopy IR region lower energy than visible light (below red – produces heating as with a heat lamp) IR energy in a spectrum is usually measured as wavenumber (cm-1), the inverse of wavelength and proportional to frequency Specific IR absorbed by an organic molecule is related to its structure

Infrared Energy Modes IR energy absorption corresponds to specific modes, corresponding to combinations of atomic movements, such as bending and stretching of bonds between groups of atoms called “normal modes” Corresponds to vibrations and rotations

12.7 Interpreting Infrared Spectra Most functional groups absorb at about the same energy and intensity independent of the molecule they are in IR spectrum has lower energy region characteristic of molecule as a whole (“fingerprint” region)

Figure 12.14

Regions of the Infrared Spectrum 4000-2500 cm-1 N-H, C-H, O-H (stretching) 3300-3600 N-H, O-H 3000 C-H 2500-2000 cm-1 CºC and C º N (stretching) 2000-1500 cm-1 double bonds (stretching) C=O 1680-1750 C=C 1640-1680 cm-1 Below 1500 cm-1 “fingerprint” region

Differences in Infrared Absorptions Bond stretching dominates higher energy modes Light objects connected to heavy objects vibrate fastest: C–H, N–H, O–H For two heavy atoms, stronger bond requires more energy: C º C, C º N > C=C, C=O, C=N > C–C, C–O, C–N, C–halogen

12.8 Infrared Spectra of Some Common Functional Groups Alkanes, Alkenes, Alkynes C-H, C-C, C=C, C º C have characteristic peaks absence helps rule out C=C or C º C

12.8 Infrared Spectra of Some Common Functional Groups Alkynes

IR: Aromatic Compounds Weak C–H stretch at 3030 cm1 Weak absorptions 1660 - 2000 cm1 range Medium-intensity absorptions 1450 to 1600 cm1 See spectrum of phenylacetylene, Figure 12.15

IR: Aromatic Compounds

IR: Alcohols and Amines O–H 3400 to 3650 cm1 Usually broad and intense N–H 3300 to 3500 cm1 Sharper and less intense than an O–H

IR: Carbonyl Compounds Strong, sharp C=O peak 1670 to 1780 cm1 Exact absorption characteristic of type of carbonyl compound 1730 cm1 in saturated aldehydes 1705 cm1 in aldehydes next to double bond or aromatic ring

IR: Carbonyl Compounds

C=O in Ketones C=O in Esters 1735 cm1 in saturated esters 1715 cm1 in six-membered ring and acyclic ketones 1750 cm1 in 5-membered ring ketones 1690 cm1 in ketones next to a double bond or an aromatic ring C=O in Esters 1735 cm1 in saturated esters 1715 cm1 in esters next to aromatic ring or a double bond

Let’s Work a Problem Propose structures for a compound that fits the following data: It is an alcohol with M+ = 88 and fragments at m/z = 73, m/z = 70, and m/z = 59

Answer Answer: We must first decide on the the formula of an alcohol that could undergo this type of fragmentation via mass spectrometry. We know that an alcohol possesses an O atom (MW=16), so that leads us to the formula C5H12O for an alcohol with M+ = 88, with a structure of: One fragmentation peak at 70 is due to the loss of water, and alpha cleavage can result in m/z of 73 and 59.