12 PERIOD HYBRID WARM-COLD SYNCHROTRON FOR THE MUON COLLIDER Al Garren November 10, 2011.

Slides:



Advertisements
Similar presentations
Optics and magnetic field calculation for the Hall D Tagger Guangliang Yang Glasgow University.
Advertisements

Insertions for an Isochronous, 8-16 turn, 8-20 GeV, Muon FFAG G H Rees, RAL.
Isochronous, FFAG Rings with Insertions for Rapid Muon or Electron Acceleration G H Rees, RAL.
MCDW 2008, JLAB, Dec 8-12, Multi-pass Droplet Arc Design Guimei WANG (Muons Inc./ODU) Dejan Trbojevic (BNL) Alex Bogacz (JLAB)
DR km DTC Lattice 7 July 2011 D. Rubin. DTC01 layout 1.Circumference = m, 712m straights 2.~ 6 phase trombone cells 3.54 – 1.92m long wigglers.
(ISS) Topics Studied at RAL G H Rees, RAL, UK. ISS Work Areas 1. Bunch train patterns for the acceleration and storage of μ ± beams. 2. A 50Hz, 1.2 MW,
Update of 3.2 km ILC DR design (DMC3) Dou Wang, Jie Gao, Gang Xu, Yiwei Wang (IHEP) IWLC2010 Monday 18 October - Friday 22 October 2010 Geneva, Switzerland.
Design of an Isochronous FFAG Ring for Acceleration of Muons G.H. Rees RAL, UK.
Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,
1 Advances for a Solenoid/Dipole 6D Cooling Ring X. Ding, UCLA Muon Accelerator Program-Winter Meeting Jefferson Lab 3/1/11.
1 Proposal for a CESR Damping Ring Test Facility M. Palmer & D.Rubin November 8, 2005.
Hybrid Synchrotron Arc: 2 Dipoles per Half Cell, Warm at F J. Scott Berg Advanced Accelerator Group Meeting 3 August 2011.
NUFACT’05 24-June-2005 H. Schönauer CERN The typical approaches to Muon acceleration at higher energies: Recirculating linacs Scaling FFAG’s : constant.
ILC Damping Ring Alternative Lattice Design ( Modified FODO ) ** Yi-Peng Sun *,1,2, Jie Gao 1, Zhi-Yu Guo 2 Wei-Shi Wan 3 1 Institute of High Energy Physics,
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Muon Collider Design Workshop, BNL, December 1-3, 2009.
LER Workshop, October 11, 2006LER & Transfer Line Lattice Design - J.A. Johnstone1 LHC Accelerator Research Program bnl-fnal-lbnl-slac Introduction The.
HYBRID WARM-COLD SYNCHROTRON FOR THE MUON COLLIDER Al Garren July 28, 2011.
FFAG Lattice Design of eRHIC and LHeC Dejan Trbojevic and Stephen Brooks EIC 2014 Workshop – Dejan Trbojevic and Stephen Brooks 1.
Scaling Gas-filled Muon Ring Coolers Al Garren, UCLA Ringcooler Mini-workshop Tucson, December 15-16, 2003.
“2:1” Scaled eRHIC FFAG Design Featuring ≤30T/m quadrupoles August 18, 2014Stephen Brooks, eRHIC FFAG meeting1.
Hybrid Synchrotron Arc: 2 Dipoles per Half Cell J. Scott Berg Advanced Accelerator Group Meeting 28 July 2011.
Accumulator & Compressor Rings with Flexible Momentum Compaction arccells MAP 2014 Spring Meeting, Fermilab, May 27-31, 2014 Y. Alexahin (FNAL APC)
Hybrid Fast-Ramping Synchrotron to 750 GeV/c J. Scott Berg Brookhaven National Laboratory MAP Collaboration Meeting March 5, 2012.
Harold G. Kirk Brookhaven National Laboratory Rings with 400 and 800 MHz RF Ring Cooler Meeting Oxford, Ms. March 11-12, 2004.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz 1 Muon Acceleration – RLA, FFAG and Fast Ramping.
Analysis of Garren’s 27-Jul-2011 Hybrid Synchrotron Lattice J. Scott Berg Brookhaven National Laboratory Advanced Accelerator Group Meeting February 2,
Optics considerations for PS2 October 4 th, 2007 CARE-HHH-APD BEAM’07 W. Bartmann, M. Benedikt, C. Carli, B. Goddard, S. Hancock, J.M. Jowett, A. Koschik,
Optics solutions for the PS2 ring February 11 th, 2008 LIS Section Meeting Y. Papaphilippou.
HF2014 Workshop, Beijing, China 9-12 October 2014 Challenges and Status of the FCC-ee lattice design Bastian Haerer Challenges.
Layout and Arcs lattice design A. Chancé, B. Dalena, J. Payet, CEA R. Alemany, B. Holzer, D. Schulte CERN.
J-PARC main ring lattice An overview
eRHIC FFAG Lattice Design
Large Booster and Collider Ring
Isochronous, FFAG Rings with Insertions for Rapid Muon or Electron Acceleration G H Rees, RAL.
Estimation and Protection on Synchrotron Radiation in CEPC Main Ring
CASA Collider Design Review Retreat Other Electron-Ion Colliders: eRHIC, ENC & LHeC Yuhong Zhang February 24, 2010.
LHC (SSC) Byung Yunn CASA.
PS2 Injection/Extraction Layout
Collider Ring Optics & Related Issues
CEPC-SPPC Beihang Symposium
Optics solutions for the PS2 ring
RLA WITH NON-SCALING FFAG ARCS
Negative Momentum Compaction lattice options for PS2
Comparison of NMC rings for PS2
Proposal for a CESR Damping Ring Test Facility
Towards an NMC Ring: Dispersion suppressor & long straight section
Optics considerations for PS2
Update on Alternative Design of jleic ion injector Complex B
Negative Momentum Compaction lattice options for PS2
RHIC Magnets for JLEIC Yuhong Zhang May 11, 2018.
Towards an NMC Ring: Dispersion suppressor & long straight section
Feasibility of Reusing PEP-II Hardware for MEIC Electron Ring
Update on MEIC Activities at ANL
Fanglei Lin, Andrew Hutton, Vasiliy S. Morozov, Yuhong Zhang
Feasibility of Recuperation of Magnets in Decommissioned Storage Rings
Main Design Parameters RHIC Magnets for MEIC Ion Collider Ring
Rough designs for The LEB and HEB for pCDR-100
The MEIC electron ring as the large ion booster
Ion Collider Ring Using Superferric Magnets
Fanglei Lin, Yuhong Zhang JLEIC R&D Meeting, March 10, 2016
Alternative Ion Injector Design
Update on JLEIC Electron Ring Design
Conventional Synchronization Schemes
Fanglei Lin MEIC R&D Meeting, JLab, July 16, 2015
MEIC Alternative Design Part V
Possibility of MEIC Arc Cell Using PEP-II Dipole
Fanglei Lin JLEIC R&D Meeting, August 4, 2016
MEIC R&D Meeting, JLab, August 20, 2014
Booster to Ion Ring Transfer Line
3.2 km FODO lattice for 10 Hz operation (DMC4)
Presentation transcript:

12 PERIOD HYBRID WARM-COLD SYNCHROTRON FOR THE MUON COLLIDER Al Garren November 10, 2011

12 PERIOD RING PARAMETERS Injection/Extraction Momenta (GeV/c) Circumference (m) 6288 m Number of superperiods 12 Superperiod length (m) Superconducting magnet field (T) Ramped magnetic field min (T) Ramped magnetic field max (T) Quadrupole gradient min (T/m} Quadrupole gradient max (T/m} Cell length - normal and straight (m) 52.4 m Cell length - dispersion suppressor (m) 49 m Superperiod structure: normal N, straight S, suppressor D Equivalent number of normal dipoles 10 Cell magnet structure, superconducting S, ramped R, quads F,D: F SRRS SRRS D D SRRS SRRS F Alternate cell structure: Quadrupole length (m) 1.6 m Superconducting magnet length (m) Ramped magnet length (m) Dispersion suppressor cells: 3/4 length and 2/3 bend angle of nomal cells Hi-Lo energy separation of closed orbits (cm) Hi-Lo energy pathlength difference per superperiod (cm) Bend angle of cold dipole at GeV/c (rad)

Arc Cell