Kinematic Characteristics of mesoscale precipitation systems nearby the Baiu front by Doppler radar observations Kim, Kyung-Eak Department of Astronomy.

Slides:



Advertisements
Similar presentations
Numbers Treasure Hunt Following each question, click on the answer. If correct, the next page will load with a graphic first – these can be used to check.
Advertisements

Repaso: Unidad 2 Lección 2
1 A B C
Scenario: EOT/EOT-R/COT Resident admitted March 10th Admitted for PT and OT following knee replacement for patient with CHF, COPD, shortness of breath.
Chapter 4 Sampling Distributions and Data Descriptions.
1 ZonicBook/618EZ-Analyst Resonance Testing & Data Recording.
AP STUDY SESSION 2.
1
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 6 Author: Julia Richards and R. Scott Hawley.
Author: Julia Richards and R. Scott Hawley
1 Copyright © 2013 Elsevier Inc. All rights reserved. Appendix 01.
Properties Use, share, or modify this drill on mathematic properties. There is too much material for a single class, so you’ll have to select for your.
UNITED NATIONS Shipment Details Report – January 2006.
David Burdett May 11, 2004 Package Binding for WS CDL.
1 RA I Sub-Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Casablanca, Morocco, 20 – 22 December 2005 Status of observing programmes in RA I.
Properties of Real Numbers CommutativeAssociativeDistributive Identity + × Inverse + ×
Custom Statutory Programs Chapter 3. Customary Statutory Programs and Titles 3-2 Objectives Add Local Statutory Programs Create Customer Application For.
CALENDAR.
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt BlendsDigraphsShort.
1 How many layers of the Earth are there? The part of the Earth that consists of molten metal.
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
1 Click here to End Presentation Software: Installation and Updates Internet Download CD release NACIS Updates.
1 00/XXXX © Crown copyright Carol Roadnight, Peter Clark Met Office, JCMM Halliwell Representing convection in convective scale NWP models : An idealised.
Solve Multi-step Equations
REVIEW: Arthropod ID. 1. Name the subphylum. 2. Name the subphylum. 3. Name the order.
Break Time Remaining 10:00.
Turing Machines.
Table 12.1: Cash Flows to a Cash and Carry Trading Strategy.
PP Test Review Sections 6-1 to 6-6
1 The Blue Café by Chris Rea My world is miles of endless roads.
Bright Futures Guidelines Priorities and Screening Tables
EIS Bridge Tool and Staging Tables September 1, 2009 Instructor: Way Poteat Slide: 1.
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt Vocabulary.
Bellwork Do the following problem on a ½ sheet of paper and turn in.
CS 6143 COMPUTER ARCHITECTURE II SPRING 2014 ACM Principles and Practice of Parallel Programming, PPoPP, 2006 Panel Presentations Parallel Processing is.
The challenge ahead: Ocean Predictions in the Arctic Region Lars Petter Røed * Presented at the OPNet Workshop May 2008, Geilo, Norway * Also affiliated.
Exarte Bezoek aan de Mediacampus Bachelor in de grafische en digitale media April 2014.
Copyright © 2012, Elsevier Inc. All rights Reserved. 1 Chapter 7 Modeling Structure with Blocks.
1 RA III - Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Buenos Aires, Argentina, 25 – 27 October 2006 Status of observing programmes in RA.
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
1..
CONTROL VISION Set-up. Step 1 Step 2 Step 3 Step 5 Step 4.
Adding Up In Chunks.
MaK_Full ahead loaded 1 Alarm Page Directory (F11)
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt Synthetic.
When you see… Find the zeros You think….
Model and Relationships 6 M 1 M M M M M M M M M M M M M M M M
1 Using one or more of your senses to gather information.
Subtraction: Adding UP
: 3 00.
5 minutes.
1 NWS-COMET Hydrometeorology Course 15 – 30 June 1999 Meteorology Primer.
1 hi at no doifpi me be go we of at be do go hi if me no of pi we Inorder Traversal Inorder traversal. n Visit the left subtree. n Visit the node. n Visit.
Analyzing Genes and Genomes
Prof.ir. Klaas H.J. Robers, 14 July Graduation: a process organised by YOU.
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
Essential Cell Biology
Converting a Fraction to %
Clock will move after 1 minute
Intracellular Compartments and Transport
PSSA Preparation.
Essential Cell Biology
Immunobiology: The Immune System in Health & Disease Sixth Edition
Physics for Scientists & Engineers, 3rd Edition
Energy Generation in Mitochondria and Chlorplasts
Select a time to count down from the clock above
Murach’s OS/390 and z/OS JCLChapter 16, Slide 1 © 2002, Mike Murach & Associates, Inc.
Copyright Tim Morris/St Stephen's School
Presentation transcript:

Kinematic Characteristics of mesoscale precipitation systems nearby the Baiu front by Doppler radar observations Kim, Kyung-Eak Department of Astronomy and Atmospheric Science, Kyungpook National University

2 Contents Ⅰ. Introduction Ⅱ. Data acquisition Ⅲ. Analysis Method 1. VVP method 2. Calculation of vertical air velocity Ⅳ. Analysis Results Ⅴ. Summary and Conclusion

Kyungpook National University 3 Ⅰ. Introduction

Kyungpook National University 4 1. Previous Studies Takeda and Seko (1986) Study of 3-dimensional structures and propagation prosess of mesoscale rain band using data based on radar observation. Ninomia et al (1988) notified that fluctuation of Chang-ma(Baiu or Maiu) front has organization according Orlanski classification.

Kyungpook National University 5 Iwasaki and Takeda (1993) Study of structures and states of mesoscale cloud clusters moving over the Chang-ma front zones  Ishihara et al (1995) Analysis properties of heavy mesoscale rain band over the Chang-ma front using the Doppler radar. Takahashi et al.(1996) Analysis of both mesoscale and convectice scale features of Baiu frontal heavy rainfall.

Kyungpook National University 6 Bessho et al.(1999) Multi-scale structure of Baiu front Kanada et al.(2000) study of rainfall enhancement of band-shaped convective cloud system in the downwind side of Yaku-shima

Kyungpook National University 7 2. Purpose of study To Study kinematic characteristics and structure of mesoscale precipitation developed on the Baiu front using a Doppler radar observations

Kyungpook National University 8 Ⅱ. Data acquisition

Kyungpook National University 9 1. Observation area The location of Doppler radar and radiosonde observation site Radar data : Yakushim, Japan Sounding data : Minamita, Japan

Kyungpook National University 10 Case 1: 1600 LST, LST, 22, June, 1996  Case 2: 1900 LST, LST, 06, July, observation period 3. elevation angles  0.5 o, 1.6 o, 2.8 o, 4.2 o, 6.1 o, 8.9 o, 12.9 o, 17.9 o, 24.0 o, 31.0 o

Kyungpook National University The characteristics of MRI-X band radar installed at Minamita Parameter Parameter Characteristic ValueCharacteristic Value frequency (MHz) frequency (MHz) wavelngth (cm)wavelngth (cm) 3 Maximun range (km)Maximun range (km) 75 km75 km Nyquist velocity (ms-1)Nyquist velocity (ms-1) ±15.29 ±15.29 Pulse repetition frequency (Hz)Pulse repetition frequency (Hz) Number of range gates Number of range gates range resolution (m)range resolution (m) 250m 250m Azimuth resolution (degree)Azimuth resolution (degree) data resolution velocity (ms-1) reflectivity (dBZ) data resolution velocity (ms-1) reflectivity (dBZ)

Kyungpook National University 12 Ⅲ. Analysis Method

Kyungpook National University VVP(Volume Velocity Processing) The data processing geometry of VVP and TVP method. The △ h and D are the vertical depth and diameter of slice, respectively. Here the 250 m and 45 km, respectively.

Kyungpook National University 14 Kinematical parameters estimated by VVP method

Kyungpook National University Calculation of vertical air velocity  used anelastic mass continuity equation (Ogura and Phillips, 1962)

Kyungpook National University 16 Ⅳ. Analysis Results

Kyungpook National University LST, 21, June, 1996 ~ 0700 LST, 22, June, 1996 Case Ⅰ

Kyungpook National University 18 The surface weather map at (a) 0000 UTC(9 LST) 21 June, and (b) 1200 UTC(21 LST) 21 June, (a) (b)

Kyungpook National University 19  Infrared satellite image at (a) 1800 LST 21 June, (b) 2100 LST 21 June. (c) 0000 LST 22 June, and (d) 0300 LST 22 June, 1996 (a)(b) (c)(d)

Kyungpook National University 20 Three hourly rainfall amounts around Yakushima from 1500 LST 21 June, 1996 to 0900 LST 22 June, 1996 (Case 1).

Kyungpook National University 21 The vertical profiles of potential temperature, equivalent potential temperature and saturated equivalent potential temperature at (a) 1500 LST, 21, June, (b) 2100 LST, 21, June and (c) 0900 LST, 22, June, respectively. And the vertical profiles of (d) temperature, (e) wind speed and (f) wind direction at periods of (a), (b) and (c).

Kyungpook National University 22 Time-height cross sections of wind vector drove with a VVP processing diameter of 45 km and processing slice depth of 200 m.

Kyungpook National University 23 Time-height cross sections of (a) reflectivity (dBZ) and (b) divergence (1.0×10 -4 s -1 ) from 1600 LST 21 to 0700 LST 22 June, 1996.

Kyungpook National University 24 The vertical profiles of (a) radar reflectivity, (b) divergence, (c) vertical air velocity, and (d) fall velocity at 1800 LST-1900 LST 21 June, 1996.

Kyungpook National University 25 The vertical profiles of (a) radar reflectivity, (b) divergence, (c) vertical air velocity, and (d) fall velocity at 2100 LST, LST, 22, June, 1996

Kyungpook National University 26 The vertical profiles of (a) radar reflectivity, (b) divergence, (c) vertical air velocity, and (d) fall velocity at 0200 LST LST, 22, June, 1996.

Kyungpook National University 27 The vertical profiles of (a) radar reflectivity, (b) divergence, (c) vertical air velocity, and (d) fall velocity at 0400 LST-0430 LST, 22, June,1996.

Kyungpook National University 28 The vertical profiles of (a) radar reflectivity, (b) divergence, (c) vertical air velocity, and (d) fall velocity at 0500 LST LST, 22, June, 1996.

Kyungpook National University 29 Time-height cross sections of divergence components (×10 -4 s -1 ) parallel (a) and perpendicular (b) to the front of Case 1, respectively.

Kyungpook National University 30 Time-height cross sections of vertical wind shear components (×10 -3 s -1 ) parallel (a) and perpendicular (b) to the front of Case 1, respectively.

Kyungpook National University 31 Case Ⅱ 1900 LST, 05, July, 1996 ~1600 LST, 06, July, 1996

Kyungpook National University 32 The surface weather maps at (a) 1200 UTC (2100 LST) 5 July, 1996 and (b) 1200 UTC (2100 LST) 6 July, (a) (b)

Kyungpook National University 33 GMS IR images with 3 hour intervals from 1800 LST 5 July, to 1500 LST 6 July, 1996 (Case 2). (a) 1800 LST 5 July 1996 (b) 2100 LST 5 July 1996 (c) 0000 LST 6 July 1996 (d) 0300 LST 6 July 1996

Kyungpook National University 34 continued (e) 0600 LST 6 July 1996 (f) 0900 LST 6 July 1996 (g) 1200 LST 6 July 1996 (h) 1500 LST 6 July 1996

Kyungpook National University 35 Three hourly rainfall amounts around Yakushima from 1800 LST 5 July, 1996 to 1800 LST 6 July, 1996 (Case 2).

Kyungpook National University 36 The vertical profiles of potential temperature (θ), equivalent potential temperature (θ e ), and saturated potential temperature (θ es ) at (a) 2100 LST 5 July, (b) 0900 LST 5 July and (c) 1500 LST 6 July, and the vertical profiles of (d) temperature, (e) wind speed and (f) wind direction at period of (a), (b), and (c), respectively.

Kyungpook National University 37 Time-height cross sections of (a) reflectivity (dBZ) and (b) divergence(1.0x10 -4 s -1 ) from 1900 LST 5 to 1600 LST 6 July, 1996.

Kyungpook National University 38 Time-height cross sections of (a) fall velocity (ms -1 ) and and (b) vertical velocity of air (ms -1 ).

Kyungpook National University 39 Time-height cross sections of divergence components(×10 -4 s -1 ) parallel (a) and perpendicular (b) to the front of Case 2, respectively.

Kyungpook National University 40 Time-height cross section of vertical wind shear (×10 -3 s -1 ) of Case 2.

Kyungpook National University 41 Schematic diagram of precipitation structure developed on Baiu front of Case 1 and 2. The C1 represents a convective system ahead of the Baiu front, and the C1, and C2 are convective systems developed on the line of wind shear. The S1 and S2 represent a large stratiform cloud system with bright band and stratiform cloud on the shear line, respectively. Case 1Case 2

Kyungpook National University 42 The vertical profiles (a) radar reflectivity (dBZ), (b) divergence (×10 -4 s -1 ), (c) vertical velocity of air (ms -1 ), and (d) fall velocity (ms -1 ) averaged from 1900 LST to 2200 LST 6 July, 1996.`

Kyungpook National University 43 The vertical profiles (a) radar reflectivity (dBZ), (b) divergence (×10 -4 s - 1 ), (c) vertical velocity of air (ms -1 ), and (d) fall velocity (ms -1 ) averaged from 1145 LST 6 to 1600 LST 7 July, 1996.

Kyungpook National University 44 Time height cross sections of vertical wind shear components (× s -1 ) parallel (a) and perpendicular (b) to the front of Case 2, respectively.

Kyungpook National University 45 V. Summary and conclusions

Kyungpook National University 46 1). The present study shows that the precipitation structure and kinematic characteristics and structure of the precipitation developed along the Baiu front highly depends on its type, that is, cold-type or warm-type. 2). The analyzed Baiu frontal precipitation system were found to be composed of three different systems: convective system whose top higher than the melting level, stratiform cloud with bright band, and clouds developed along the vertical shear line of the horizontal wind.