Guin-Dar Lin, Luming Duan University of Michigan 2009 March Meeting G.-D. Lin, S.-L. Zhu, R. Islam, K. Kim, M.-S. Chang, S. Korenblit, C. Monroe, L.-M.

Slides:



Advertisements
Similar presentations
Vorlesung Quantum Computing SS 08 1 quantum parallelism a 1 F |00> + a 2 F |01> + a 3 F |10> + a 4 F |11> a 1 |00> + a 2 |01> + a 3 |10> + a 4 |11> input.
Advertisements

Gregynog QIP meeting QIP Experiments with ions, atoms and molecules Christopher Foot, University of Oxford
What is the ISOLDE cooler RFQ CB - ISCOOL H. Frånberg.
Quantum Computing via Local Control Einat Frishman Shlomo Sklarz David Tannor.
Eric Prebys, FNAL. USPAS, Knoxville, TN, Jan , 2014 Lecture 16 -Negative Mass Instability 2 Consider two particles in a bunch. Below transition.
Trapped Ions and the Cluster State Paradigm of Quantum Computing Universität Ulm, 21 November 2005 Daniel F. V. JAMES Department of Physics, University.
1 Trey Porto Joint Quantum Institute NIST / University of Maryland University of Minnesota 26 March 2008 Controlled exchange interactions in a double-well.
Suppressing decoherence and heating with quantum bang-bang controls David Vitali and Paolo Tombesi Dip. di Matematica e Fisica and Unità INFM, Università.
Quantum Mechanics Discussion. Quantum Mechanics: The Schrödinger Equation (time independent)! Hψ = Eψ A differential (operator) eigenvalue equation H.
Quantum Computing with Trapped Ion Hyperfine Qubits.
Pre-requisites for quantum computation Collection of two-state quantum systems (qubits) Operations which manipulate isolated qubits or pairs of qubits.
Simple quantum algorithms with an electron in a Penning Trap David Vitali, Giacomo Ciaramicoli, Irene Marzoli, and Paolo Tombesi Dip. di Matematica e.
An Error Model for Quantum Circuits Using Ion Traps Manoj Rajagopalan.
Quantum Information Processing with Trapped Ions E. Knill C. Langer D. Leibfried R. Reichle S. Seidelin T. Schaetz D. J. Wineland NIST-Boulder Ion QC group.
Overview of QM Translational Motion Rotational Motion Vibrations Cartesian Spherical Polar Centre of Mass Statics Dynamics P. in Box Rigid Rotor Angular.

“Quantum computation with quantum dots and terahertz cavity quantum electrodynamics” Sherwin, et al. Phys. Rev A. 60, 3508 (1999) Norm Moulton LPS.
Cavity QED as a Deterministic Photon Source Gary Howell Feb. 9, 2007.
Lattice Vibrations – Phonons in Solids Alex Mathew University of Rochester.
Quantum Computing with Entangled Ions and Photons Boris Blinov University of Washington 28 June 2010 Seattle.
WHY ???? Ultrashort laser pulses. (Very) High field physics Highest peak power, requires highest concentration of energy E L I Create … shorter pulses.
Thermal Properties of Crystal Lattices
Crystal Lattice Vibrations: Phonons
Optical control of electrons in single quantum dots Semion K. Saikin University of California, San Diego.
Spin-motion coupling in atoms Cooling to motional ground states and Quantum logic spectroscopy.
of 34 Atomic Ions in Penning Traps for Quantum Information Processing Danny Segal QOLS Group, Blackett Laboratory. Current group members: R.
Interfacing quantum optical and solid state qubits Cambridge, Sept 2004 Lin Tian Universität Innsbruck Motivation: ion trap quantum computing; future roads.
Point Paul trap: Fiber integration and height variation
Quantum Devices (or, How to Build Your Own Quantum Computer)
Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.
Localization of phonons in chains of trapped ions Alejandro Bermúdez, Miguel Ángel Martín-Delgado and Diego Porras Department of Theoretical Physics Universidad.
Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler.
Chang-Kui Duan, Institute of Modern Physics, CUPT 1 Harmonic oscillator and coherent states Reading materials: 1.Chapter 7 of Shankar’s PQM.
Generation of Mesoscopic Superpositions of Two Squeezed States of Motion for A Trapped Ion Shih-Chuan Gou ( 郭西川 ) Department of Physics National Changhua.
Stabilizing moduli with flux in brane gas cosmology Jin Young Kim (Kunsan National Univ.) CosPA 2009, Melbourne Based on arXiv: [hep-th]; PRD 78,
Determination of fundamental constants using laser cooled molecular ions.
Optical Fiber Communications
A deterministic source of entangled photons David Vitali, Giacomo Ciaramicoli, and Paolo Tombesi Dip. di Matematica e Fisica and Unità INFM, Università.
Specific Heat of Solids Quantum Size Effect on the Specific Heat Electrical and Thermal Conductivities of Solids Thermoelectricity Classical Size Effect.
Interaction of radiation with atoms and ions (I) Absorption- Stimulated emission E1E1 E2E2 W 12 =W 21 Spontaneous emission More definitionsCross section.
Multi-scale Heat Conduction Quantum Size Effect on the Specific Heat
Dynamics of phase transitions in ion traps A. Retzker, A. Del Campo, M. Plenio, G. Morigi and G. De Chiara Quantum Engineering of States and Devices: Theory.
Modular Universal Scalable Ion-trap Quantum Computer MUSIQC Multi-institution collaboration to develop a scalable quantum computer based on ion trap arrays.
/171 VIBRATIONS OF A SHORT SPAN, COMPARISON BETWEEN MODELIZATION AND MEASUREMENTS PERFORMED ON A LABORATORY TEST SPAN S. Guérard (ULg) J.L. Lilien (ULg)
Low Emittance RF Gun Developments for PAL-XFEL
1. FOCUS and MCTP, Department of Physics, University of Michigan, Ann Arbor, Michigan LQIT and ICMP, Department of Physics, South China Normal.
Hanjo Lim School of Electrical & Computer Engineering Lecture 2. Basic Theory of PhCs : EM waves in mixed dielectric.
Integrated electronic optical switches in future chip ion trap Shu, Gang 5/24/2006.
Vlasov Equation for Chiral Phase Transition
Molecular Deceleration Georgios Vasilakis. Outline  Why cold molecules are important  Cooling techniques  Molecular deceleration  Principle  Theory.
Macroscopic quantum effects generated by the acoustic wave in molecular magnet 김 광 희 ( 세종대학교 ) Acknowledgements E. M. Chudnovksy (City Univ. of New York,
Quantum Computation With Trapped Ions Brian Fields.
Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)
Squeezing generation and revivals in a cavity-ion system Nicim Zagury Instituto de Física, Universidade Federal Rio de Janeiro, Brazil colaboradores: R.
LIGO Laboratory1 Thermal Compensation in LIGO Phil Willems- Caltech Baton Rouge LSC Meeting, March 2007 LIGO-G Z.
Advanced Energy Systems Inc. P.O. Box 7455, Princeton, NJ Phone:(609) Fax:(609) Jangho.
Electromagnetically biased Self-assembly
Vibrational Motion Harmonic motion occurs when a particle experiences a restoring force that is proportional to its displacement. F=-kx Where k is the.
Imperial College London Robust Cooling of trapped particles J. Cerrillo-Moreno, A. Retzker and M.B. Plenio (Imperial College) Olomouc Feynman Festival.
Lecture 9 Correction! (Shout out of thanks to Seok!) To get the wave equation for v when C 13 ≠ C 12, it is NOT OK to just do a cyclic permutation. That’s.
4-1 supplement : Thermal Expansion of Glass
Yingshun Zhu Design of Small Aperture Quadrupole Magnet for HEPS-TF
TC, U. Dorner, P. Zoller C. Williams, P. Julienne
A10 Designing spin-spin interactions in cold ion crystals
A10 Designing spin-spin interactions in cold ion crystals
Preparing antihydrogen at rest for the free fall in
Many-body Floquet systems & time-crystalline order
Ion Trap Quantum Computing and Teleportation
Guin-Dar Lin, Luming Duan University of Michigan 2009 DAMOP Meeting
Cluster and Density wave --- cluster structures in 28Si and 12C---
Presentation transcript:

Guin-Dar Lin, Luming Duan University of Michigan 2009 March Meeting G.-D. Lin, S.-L. Zhu, R. Islam, K. Kim, M.-S. Chang, S. Korenblit, C. Monroe, L.-M. Duan arXiv: Guin-Dar Lin, Luming Duan University of Michigan 2009 March Meeting Large Scale Quantum Computation in an Anharmonic Linear Ion Trap

Trapped ion quantum computation - Monroe’s group 2 S 1/2 2 P 1/2 369 nm |↓|↓ |↑|↑ F,m F =0,0 F,m F =1,0 F,m F =0,0 Effective spin-1/2 system in individual ion transverseaxial Unit: Linear Paul trap

Motional modes modes ion Raman Rabi freq. laser detuning Laser field j n Hamiltonian

gate time ion controlled phase ion phase space displacement Quantum gate Effective evolution Controlled-phase flip (CPF) Quantum control problem: - Gate time, τ - Laser detuning, μ - Pulse shaping, Ω(t) - Axial or transverse modes ~Ω(t)~Ω(t)

1. Ion shuttling:2. Quantum networks Duan, Blinov, Moehring, Monroe, 2004 Kielpinksi, Monroe, Wineland, Nature 417, 709 (2002) 1. Ion shuttling: Scaling it up !

- lack of translational symmetry 3. Linear chain? Adding more ions? Difficulties? a. Geometrical issues -- inhomogeneity: N=20 N=60 N=120 Solution: build up a uniform ion trap - structural instability Scaling it up !

3. Linear chain? Adding more ions? Difficulties? b. Cooling issues c. Control issues -- sideband cooling is difficult -- sideband addressing is difficult -- controlling complexity increases with N (?) Independent of N AxialTransverse N=120 Solution: transverse modes Scaling it up ! Our proposal

Box potential finite gradient! V=0 uniform portion, F=0 constant spacing=d a real trap + Lowest order correction: quartic inhomogeneity (std. deviation) Design of a uniform ion crystal N=120

Practical architecture G.-D. Lin, S.-L. Zhu, R. Islam, K. Kim, M.-S. Chang, S. Korenblit, C. Monroe, L.-M. Duan arXiv:

gate time ion controlled phase ion phase space displacement Quantum gate (control scheme) Effective evolution Controlled-phase flip (CPF) Quantum control problem: - Gate time, τ - Laser detuning, μ - Pulse shaping, Ω(t) - Axial or transverse modes 2N+1 constraints (fixed) chopped into segments # =2N+1 ? N modes: real/imaginary

Segmental pulse shaping Answer: We don’t need 2N+1, but a few!! Pulse shape Infidelity Reason: Only local motion is significant. G.-D. Lin, S.-L. Zhu, R. Islam, K. Kim, M.-S. Chang, S. Korenblit, C. Monroe, L.-M. Duan arXiv: TP

Temperature and imperfection 1. Infidelity due to axial thermal motion (at Doppler temperature) 2. Infidelity due to anharmonicity of the ion vibration 3. Infidelity due to transverse thermal motion (out of LD-limit correction) G.-D. Lin, S.-L. Zhu, R. Islam, K. Kim, M.-S. Chang, S. Korenblit, C. Monroe, L.-M. Duan arXiv: Ion spacing ~ 10 μm Width of Gaussian beam ~ 4 μm Cross-talk prob. ~ Doppler cooling is sufficient!

G.-D. Lin, S.-L. Zhu, R. Islam, K. Kim, M.-S. Chang, S. Korenblit, C. Monroe, L.-M. Duan arXiv: An an-harmonic axial ion trap leads to large uniform ion chains - with translational symmetry - structurally stable Use of transverse phonon modes, eliminate the requirement of sideband cooling Simple laser pulse control leads to high-fidelity gates in any large ion crystal Complexity of quantum gate does NOT increase with the size of the system. Multiple gates can be performed in parallel at different locations of the same ion chain. Summary

Optimization of the quartic trap purely harmonic quartic (optimized) inhomogeneity spacing

Two central integrals

Gate fidelity ideal gate thermal field, T

Axial thermal fluctuation

Thank you.