1 Interpreting a Model in which the slopes are allowed to differ across groups Suppose Y is regressed on X1, Dummy1 (an indicator variable for group membership),

Slides:



Advertisements
Similar presentations
TWO STEP EQUATIONS 1. SOLVE FOR X 2. DO THE ADDITION STEP FIRST
Advertisements

Numbers Treasure Hunt Following each question, click on the answer. If correct, the next page will load with a graphic first – these can be used to check.
1 Inducements–Call Blocking. Aware of the Service?
Adders Used to perform addition, subtraction, multiplication, and division (sometimes) Half-adder adds rightmost (least significant) bit Full-adder.
1
© 2008 Pearson Addison Wesley. All rights reserved Chapter Seven Costs.
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 6 Author: Julia Richards and R. Scott Hawley.
Author: Julia Richards and R. Scott Hawley
1 Copyright © 2013 Elsevier Inc. All rights reserved. Appendix 01.
Properties Use, share, or modify this drill on mathematic properties. There is too much material for a single class, so you’ll have to select for your.
Objectives: Generate and describe sequences. Vocabulary:
UNITED NATIONS Shipment Details Report – January 2006.
David Burdett May 11, 2004 Package Binding for WS CDL.
Writing Pseudocode And Making a Flow Chart A Number Guessing Game
We need a common denominator to add these fractions.
1 RA I Sub-Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Casablanca, Morocco, 20 – 22 December 2005 Status of observing programmes in RA I.
Properties of Real Numbers CommutativeAssociativeDistributive Identity + × Inverse + ×
Exit a Customer Chapter 8. Exit a Customer 8-2 Objectives Perform exit summary process consisting of the following steps: Review service records Close.
Create an Application Title 1A - Adult Chapter 3.
Process a Customer Chapter 2. Process a Customer 2-2 Objectives Understand what defines a Customer Learn how to check for an existing Customer Learn how.
Custom Statutory Programs Chapter 3. Customary Statutory Programs and Titles 3-2 Objectives Add Local Statutory Programs Create Customer Application For.
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
Rhesy S.ppt proRheo GmbH
1 Click here to End Presentation Software: Installation and Updates Internet Download CD release NACIS Updates.
The 5S numbers game..
Solve Multi-step Equations
REVIEW: Arthropod ID. 1. Name the subphylum. 2. Name the subphylum. 3. Name the order.
Break Time Remaining 10:00.
Table 12.1: Cash Flows to a Cash and Carry Trading Strategy.
PP Test Review Sections 6-1 to 6-6
Bright Futures Guidelines Priorities and Screening Tables
Bellwork Do the following problem on a ½ sheet of paper and turn in.
Exarte Bezoek aan de Mediacampus Bachelor in de grafische en digitale media April 2014.
VOORBLAD.
General Linear Models The theory of general linear models posits that many statistical tests can be solved as a regression analysis, including t-tests.
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 1 Section 5.5 Dividing Polynomials Copyright © 2013, 2009, 2006 Pearson Education, Inc. 1.
Copyright © 2012, Elsevier Inc. All rights Reserved. 1 Chapter 7 Modeling Structure with Blocks.
1 RA III - Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Buenos Aires, Argentina, 25 – 27 October 2006 Status of observing programmes in RA.
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
1..
CONTROL VISION Set-up. Step 1 Step 2 Step 3 Step 5 Step 4.
Adding Up In Chunks.
Statistical Analysis SC504/HS927 Spring Term 2008
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt Synthetic.
Note to the teacher: Was 28. A. to B. you C. said D. on Note to the teacher: Make this slide correct answer be C and sound to be “said”. to said you on.
Subtraction: Adding UP
: 3 00.
1 hi at no doifpi me be go we of at be do go hi if me no of pi we Inorder Traversal Inorder traversal. n Visit the left subtree. n Visit the node. n Visit.
Analyzing Genes and Genomes
Types of selection structures
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
Essential Cell Biology
Clock will move after 1 minute
Intracellular Compartments and Transport
PSSA Preparation.
Essential Cell Biology
Immunobiology: The Immune System in Health & Disease Sixth Edition
Simple Linear Regression Analysis
Physics for Scientists & Engineers, 3rd Edition
Multiple Regression and Model Building
Energy Generation in Mitochondria and Chlorplasts
Select a time to count down from the clock above
Murach’s OS/390 and z/OS JCLChapter 16, Slide 1 © 2002, Mike Murach & Associates, Inc.
By Hui Bian Office for Faculty Excellence Spring
4/4/2015Slide 1 SOLVING THE PROBLEM A one-sample t-test of a population mean requires that the variable be quantitative. A one-sample test of a population.
STAT E-150 Statistical Methods
Presentation transcript:

1 Interpreting a Model in which the slopes are allowed to differ across groups Suppose Y is regressed on X1, Dummy1 (an indicator variable for group membership), and Dummy1 * X1. The coefficient for Dummy1 * X1 will indicate how the effect of X1 differs across groups. For example, if the coefficient is positive, this means that X1 has a larger effect (i.e. more positive or less negative) in group 1 than it does in the other group. For example, we might think that whites gain more from each year of education than do blacks. Or, we might even think that the effect of a variable is positive in one group and zero or negative in another. Friday, 19 December 20147:16 AM

2 Interpreting a Model in which the slopes are allowed to differ across groups The coefficient for X1 is the effect (i.e. slope) of X1 for those not in group 1; b1 + b dummy X1 is the effect (slope) of X1 on those in group 1. When interaction terms are added, lines are no longer parallel, and you get something like … Friday, 19 December 20147:16 AM

3 Interpreting a Model in which the slopes are allowed to differ across groups For both groups, as X increases, Y increases. However, the increase (slope) is much greater for group 1 than it is for group 2. The t value for the interaction term tells you whether the slope for that group differs significantly from the slope for the reference group. Friday, 19 December 20147:16 AM

4 Interpreting a Model in which the slopes are allowed to differ across groups This exercise is loosely based on "How can I compare regression coefficients between two groups?""How can I compare regression coefficients between two groups?" Sometimes your research hypothesis may predict that the size of a regression coefficient should be bigger for one group than for another. For example, you might believe that the regression coefficient of height predicting weight would be higher for men than for women. We have a data file with 10 fictional females and 10 fictional males, along with their height in inches and their weight in pounds. Friday, 19 December 20147:16 AM

5 Interpreting a Model in which the slopes are allowed to differ across groups This exercise is loosely based on “How can I compare regression coefficients between two groups?” Sometimes your research hypothesis may predict that the size of a regression coefficient should be bigger for one group than for another. For example, you might believe that the regression coefficient of height predicting weight would be higher for men than for women. We have a data file with 10 fictional females and 10 fictional males, along with their height in inches and their weight in pounds. Friday, 19 December 20147:16 AM

6 Interpreting a Model in which the slopes are allowed to differ across groups We analyse their data separately using the regression commands below. Note that we have to do two regressions, one with the data for females only and one with the data for males only. We can use the split file command to split the data file by gender and then run the regression. The parameter estimates (coefficients) for females and males are shown below, and the results do seem to suggest that height is a stronger predictor of weight for males (3.19) than for females (2.10). Friday, 19 December 20147:16 AM

7 Interpreting a Model in which the slopes are allowed to differ across groups Data > Split File Friday, 19 December 20147:16 AM

8 Interpreting a Model in which the slopes are allowed to differ across groups SORT CASES BY gender. SPLIT FILE LAYERED BY gender. Friday, 19 December 20147:16 AM

9 Interpreting a Model in which the slopes are allowed to differ across groups Now perform the regression Analyze > Regression > Linear Friday, 19 December 20147:16 AM

10 Interpreting a Model in which the slopes are allowed to differ across groups REGRESSION /MISSING LISTWISE /STATISTICS COEFF OUTS R ANOVA /CRITERIA=PIN(.05) POUT(.10) /NOORIGIN /DEPENDENT weight /METHOD=ENTER height. Friday, 19 December 20147:16 AM

11 Interpreting a Model in which the slopes are allowed to differ across groups Friday, 19 December 20147:16 AM

12 Interpreting a Model in which the slopes are allowed to differ across groups Friday, 19 December 20147:16 AM The parameter estimates (coefficients) for females and males are shown, and the results do seem to suggest that height is a stronger predictor of weight for males (3.19) than for females (2.10).

13 Interpreting a Model in which the slopes are allowed to differ across groups Alternately employ a single model, so remove the split. Note reset if you wish to remove previous split (not essential). Data > Split File Friday, 19 December 20147:16 AM

14 Interpreting a Model in which the slopes are allowed to differ across groups Friday, 19 December 20147:16 AM split file off.

15 Interpreting a Model in which the slopes are allowed to differ across groups Friday, 19 December 20147:16 AM We can compare the regression coefficients of males with females to test the null hypothesis Ho: B f = B m, where B f is the regression coefficient for females, and B m is the regression coefficient for males. To do this analysis, we first make a dummy variable called female that is coded 1 for female and 0 for male, and a variable femht that is the product of female and height. We then use female, height and femht as predictors in the regression equation. Now generate variables and repeat regression.

16 Interpreting a Model in which the slopes are allowed to differ across groups Friday, 19 December 20147:16 AM Transform > Recode into Different Variables

17 Interpreting a Model in which the slopes are allowed to differ across groups Friday, 19 December 20147:16 AM Set Name then employ Old and New Values

18 Interpreting a Model in which the slopes are allowed to differ across groups Friday, 19 December 20147:16 AM Having already mapped F to 1 add the mapping of M to 0 (add).

19 Interpreting a Model in which the slopes are allowed to differ across groups Friday, 19 December 20147:16 AM Finally Continue

20 Interpreting a Model in which the slopes are allowed to differ across groups Friday, 19 December 20147:16 AM Finally OK RECODE gender ('F'=1) ('M'=0) INTO female. EXECUTE.

21 Interpreting a Model in which the slopes are allowed to differ across groups Friday, 19 December 20147:16 AM Transform > Compute Variable

22 Interpreting a Model in which the slopes are allowed to differ across groups Friday, 19 December 20147:16 AM compute femht = female * height. execute.

23 Interpreting a Model in which the slopes are allowed to differ across groups Friday, 19 December 20147:16 AM Finally perform the regression Analyze > Regression > Linear

24 Interpreting a Model in which the slopes are allowed to differ across groups Friday, 19 December 20147:16 AM REGRESSION /MISSING LISTWISE /STATISTICS COEFF OUTS R ANOVA /CRITERIA=PIN(.05) POUT(.10) /NOORIGIN /DEPENDENT weight /METHOD=ENTER female height femht.

25 Interpreting a Model in which the slopes are allowed to differ across groups Friday, 19 December 20147:16 AM

26 Interpreting a Model in which the slopes are allowed to differ across groups Friday, 19 December 20147:16 AM The term femht tests the null hypothesis Ho: B f = B m. The t value is and is significant, indicating that the regression coefficient B f is significantly different from B m. Let's look at the parameter estimates to get a better understanding of what they mean and how they are interpreted. First, recall that our dummy variable female is 1 if female and 0 if male; therefore, females are the omitted group. This is needed for proper interpretation of the estimates.

27 Interpreting a Model in which the slopes are allowed to differ across groups Friday, 19 December 20147:16 AM

28 Interpreting a Model in which the slopes are allowed to differ across groups Friday, 19 December 20147:16 AM Recall

29 Interpreting a Model in which the slopes are allowed to differ across groups Friday, 19 December 20147:16 AM It is also possible to run such an analysis using glm, using syntax like that below. To make the SPSS results match those from other packages, you need to create a new variable that has the opposite coding (i.e., switching the zeros and ones). We do this with the male variable.

30 Interpreting a Model in which the slopes are allowed to differ across groups Friday, 19 December 20147:16 AM Transform > Recode into Different Variables

31 Interpreting a Model in which the slopes are allowed to differ across groups Friday, 19 December 20147:16 AM Do not forget to reset first, to remove previous recoding.

32 Interpreting a Model in which the slopes are allowed to differ across groups Friday, 19 December 20147:16 AM

33 Interpreting a Model in which the slopes are allowed to differ across groups Friday, 19 December 20147:16 AM RECODE female (0=1) (1=0) INTO male. EXECUTE.

34 Interpreting a Model in which the slopes are allowed to differ across groups Friday, 19 December 20147:16 AM Now for the glm Analyze > General Linear Model > Univariate

35 Interpreting a Model in which the slopes are allowed to differ across groups Friday, 19 December 20147:16 AM

36 Interpreting a Model in which the slopes are allowed to differ across groups Friday, 19 December 20147:16 AM Set the model Use Ctrl and Shift to select multiple variables (product).

37 Interpreting a Model in which the slopes are allowed to differ across groups Friday, 19 December 20147:16 AM Use options to display parameter estimates. UNIANOVA weight BY male WITH height /METHOD=SSTYPE(3) /INTERCEPT=INCLUDE /PRINT=PARAMETER /CRITERIA=ALPHA(0.05) /DESIGN=male height height*male.

38 Interpreting a Model in which the slopes are allowed to differ across groups Friday, 19 December 20147:16 AM

39 Interpreting a Model in which the slopes are allowed to differ across groups Friday, 19 December 20147:16 AM As you see, the glm output corresponds to the output obtained by regression. The parameter estimates appear at the end of the glm output. They also correspond to the output from regression. The term male tests the null hypothesis Ho: B f = B m. The t value is and is significant, indicating that the regression coefficient B f is significantly different from B m.

40 Interpreting a Model in which the slopes are allowed to differ across groups Friday, 19 December 20147:16 AM Let's look at the parameter estimates to get a better understanding of what they mean and how they are interpreted. First, recall that our dummy variable female is 1 if female and 0 if male; therefore, females are the omitted group. This is needed for proper interpretation of the estimates.

41 Interpreting a Model in which the slopes are allowed to differ across groups Friday, 19 December 20147:16 AM

42 Interpreting a Model in which the slopes are allowed to differ across groups Friday, 19 December 20147:16 AM Easy methods for extracting individual regression slopes: Comparing SPSS, R, and Excel Easy methods for extracting individual regression slopes: Comparing SPSS, R, and Excel Roland Pfister, Katharina Schwarz, Robyn Carson and Markus Jancyzk Tutorials in Quantitative Methods for Psychology (9) 72-78