Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.

Slides:



Advertisements
Similar presentations
TWO STEP EQUATIONS 1. SOLVE FOR X 2. DO THE ADDITION STEP FIRST
Advertisements

Numbers Treasure Hunt Following each question, click on the answer. If correct, the next page will load with a graphic first – these can be used to check.
1
Chapter 3 Demand and Behavior in Markets. Copyright © 2001 Addison Wesley LongmanSlide 3- 2 Figure 3.1 Optimal Consumption Bundle.
© 2008 Pearson Addison Wesley. All rights reserved Chapter Seven Costs.
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 6 Author: Julia Richards and R. Scott Hawley.
Author: Julia Richards and R. Scott Hawley
1 Copyright © 2013 Elsevier Inc. All rights reserved. Appendix 01.
Properties Use, share, or modify this drill on mathematic properties. There is too much material for a single class, so you’ll have to select for your.
UNITED NATIONS Shipment Details Report – January 2006.
1 RA I Sub-Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Casablanca, Morocco, 20 – 22 December 2005 Status of observing programmes in RA I.
Properties of Real Numbers CommutativeAssociativeDistributive Identity + × Inverse + ×
Exit a Customer Chapter 8. Exit a Customer 8-2 Objectives Perform exit summary process consisting of the following steps: Review service records Close.
Custom Statutory Programs Chapter 3. Customary Statutory Programs and Titles 3-2 Objectives Add Local Statutory Programs Create Customer Application For.
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt BlendsDigraphsShort.
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
1 Click here to End Presentation Software: Installation and Updates Internet Download CD release NACIS Updates.
REVIEW: Arthropod ID. 1. Name the subphylum. 2. Name the subphylum. 3. Name the order.
Break Time Remaining 10:00.
Turing Machines.
Table 12.1: Cash Flows to a Cash and Carry Trading Strategy.
PP Test Review Sections 6-1 to 6-6
EU market situation for eggs and poultry Management Committee 20 October 2011.
Bright Futures Guidelines Priorities and Screening Tables
EIS Bridge Tool and Staging Tables September 1, 2009 Instructor: Way Poteat Slide: 1.
Bellwork Do the following problem on a ½ sheet of paper and turn in.
Exarte Bezoek aan de Mediacampus Bachelor in de grafische en digitale media April 2014.
Copyright © 2012, Elsevier Inc. All rights Reserved. 1 Chapter 7 Modeling Structure with Blocks.
1 RA III - Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Buenos Aires, Argentina, 25 – 27 October 2006 Status of observing programmes in RA.
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
1..
Chemical Systems and Equilibrium
CONTROL VISION Set-up. Step 1 Step 2 Step 3 Step 5 Step 4.
Chemistry 18.2.
Adding Up In Chunks.
Subtraction: Adding UP
1 hi at no doifpi me be go we of at be do go hi if me no of pi we Inorder Traversal Inorder traversal. n Visit the left subtree. n Visit the node. n Visit.
Analyzing Genes and Genomes
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
Essential Cell Biology
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Clock will move after 1 minute
Intracellular Compartments and Transport
PSSA Preparation.
Essential Cell Biology
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Immunobiology: The Immune System in Health & Disease Sixth Edition
Physics for Scientists & Engineers, 3rd Edition
Energy Generation in Mitochondria and Chlorplasts
Murach’s OS/390 and z/OS JCLChapter 16, Slide 1 © 2002, Mike Murach & Associates, Inc.
Chapter 4 FUGACITY.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 19 Tuesday 3/18/08 Gas Phase Reactions Trends and Optimuns.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 20 Thursday 3/20/08 Multiple Reactions with Heat Effects.
Lecture 18 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture18 Thursday 3/13/08 Solution to Tuesdays In-class Problem. User Friendly Energy Balance Derivations Adiabatic (Tuesday’s lecture). Heat Exchange.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 24 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 19 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 22 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 22 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Presentation transcript:

Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place. Lecture 21

Web Lecture 21 Class Lecture 17 – Tuesday 3/19/2013 Gas Phase Reactions Trends and Optimums 2

3 User Friendly Equations relate T, X, or F i Review Last Lecture 1. Adiabatic CSTR, PFR, Batch, PBR achieve this:

4 User Friendly Equations relate T, X, or F i 2. CSTR with heat exchanger, UA(T a -T) and a large coolant flow rate: T TaTa

5 User Friendly Equations relate T, X, or F i 3. PFR/PBR with heat exchange: F A0 T 0 Coolant TaTa 3A. In terms of conversion, X

6 User Friendly Equations relate T, X, or F i 3B. In terms of molar flow rates, F i 4. For multiple reactions 5. Coolant Balance

7 Reversible Reactions endothermic reaction exothermic reaction KPKP T endothermic reaction exothermic reaction XeXe T

Heat Exchange 8 Example: Elementary liquid phase reaction carried out in a PFR F A0 F I TaTa Heat Exchange Fluid The feed consists of both inerts I and Species A with the ratio of inerts to the species A being 2 to 1.

Heat Exchange 9 a)Adiabatic. Plot X, X e, T and the rate of disappearance as a function of V up to V = 40 dm 3. b)Constant T a. Plot X, X e, T, T a and rate of disappearance of A when there is a heat loss to the coolant and the coolant temperature is constant at 300 K for V = 40 dm 3. How do these curves differ from the adiabatic case.

Heat Exchange 10 c)Variable T a Co-Current. Plot X, X e, T, T a and rate of disappearance of A when there is a heat loss to the coolant and the coolant temperature varies along the length of the reactor for V = 40 dm 3. The coolant enters at 300 K. How do these curves differ from those in the adiabatic case and part (a) and (b)? d)Variable T a Countercurrent. Plot X, X e, T, T a and rate of disappearance of A when there is a heat loss to the coolant and the coolant temperature varies along the length of the reactor for V = 20 dm 3. The coolant enters at 300 K. How do these curves differ from those in the adiabatic case and part (a) and (b)?

Heat Exchange 11 Example: PBR A ↔ B 5) Parameters For adiabatic: Constant T a : Co-current: Equations as is Counter-current:

Reversible Reactions 12 1) Mole Balances

Reversible Reactions 13 2) Rate Laws

Reversible Reactions 14 3) Stoichiometry

Reversible Reactions 15 Parameters

3) Stoichiometry: Gas Phase 16 Example: PBR A ↔ B Reversible Reactions Gas Phase Heat Effects

17 Reversible Reactions Gas Phase Heat Effects Example: PBR A ↔ B

18 Exothermic Case: XeXe T KCKC T KCKC TT XeXe ~1 Endothermic Case: Example: PBR A ↔ B Reversible Reactions Gas Phase Heat Effects

19 Case 1: Adiabatic and ΔC P =0 Additional Parameters (17A) & (17B) Reversible Reactions Gas Phase Heat Effects

Heat effects: 20 Case 2: Heat Exchange – Constant T a Reversible Reactions Gas Phase Heat Effects

Case 3. Variable T a Co-Current Case 4. Variable T a Countercurrent Guess T a at V = 0 to match T a0 = T a0 at exit, i.e., V = V f 21 Reversible Reactions Gas Phase Heat Effects

22

23

24

25

26

27

Conversion on temperature Exothermic ΔH is negative Adiabatic Equilibrium temperature (T adia ) and conversion (Xe adia ) X X e adia T adia T 28 Adiabatic Equilibrium

X2X2 F A0 F A1 F A2 F A3 T0T0 X1X1 X3X3 T0T0 T0T0 Q1Q1 Q2Q2 29

X T X3X3 X2X2 X1X1 T0T0 XeXe 30

31

T X Adiabatic T and X e T0T0 exothermic T X T0T0 endothermic Trends: Adiabatic Gas Flow Heat Effects 32

Effects of Inerts in the Feed 33

Endothermic 34 As inert flow increases the conversion will increase. However as inerts increase, reactant concentration decreases, slowing down the reaction. Therefore there is an optimal inert flow rate to maximize X. First Order Irreversible

Adiabatic: 35 As T 0 decreases the conversion X will increase, however the reaction will progress slower to equilibrium conversion and may not make it in the volume of reactor that you have. Therefore, for exothermic reactions there is an optimum inlet temperature, where X reaches X eq right at the end of V. However, for endothermic reactions there is no temperature maximum and the X will continue to increase as T increases. X T XeXe T0T0 X T X T Gas Phase Heat Effects

Adiabatic: 36 Effect of adding inerts X T V1V1 V2V2 X T T0T0 XeXe X Gas Phase Heat Effects

Exothermic Adiabatic 37 As θ I increase, T decrease and k θIθI

38

39

Endothermic Exothermic 40 Adiabatic

Heat Exchange Endothermic Exothermic 41

End of Web Lecture 21 End of Class Lecture 17 42