Carbohydrates. Contents Dr. Nikhat Siddiqi 2 Functions of carbohydrates Classification of carbohydrates Isomers and epimers Stereochemistry Hemiacetal.

Slides:



Advertisements
Similar presentations
Types of Organic Compounds
Advertisements

Carbohydrate Basics.
IMPORTANT FUNCTIONS OF CARBOHYDRATES To provide energy through their oxidation To supply carbon for the synthesis of cell components To serve as a stored.
Chapter 17: Carbohydrates
 Types of Carbohydrates  Classification of Monosaccharides  D and L Notations from Fischer Projections  Structures of Some Important Monosaccharides.
(Chapter 7). - Overview - Classification and Structure of Carbohydrates : A) Isomers and epimers B) Enantiomers 1 st Lecture: Pages :
In the name of GOD Carbohydrate.
Chapter Eighteen Carbohydrates Ch 18 | # 2 of 52 Carbohydrates cont’d.
Carbohydrates What are they? –Sugars, starches & much more –Most abundant molecules on Earth –End products of photosynthesis.
Carbohydrates. 1. Energy source for plants and animals 2. Source of carbon in metabolic processes 3. Storage form of energy 4. Structural elements of.
Chapter 8 (part 1) Carbohydrates.
Lab 5: Qualitative Analysis Test for Carbohydrates
Introduction to Carbohydrates. importance of carbohydrates Carbohydrates are initially synthesized in plants by photosynthesis. important for Carbohydrates.
CHAPTER 15 Carbohydrates. Where in the world do we find carbohydrates? Most abundant organic compound in nature Photosynthesis: plants make glucose using.
CLS 101: Chemistry for Nursing
1 Chapter 12 Outline 12.1 Monosaccharides - Aldose and ketose -Glyceraldehyde, Stereoisomers (Mirror image = enantiomer), D and L isomers of Glyceraldehyde.
1 Carbohydrates Chapter 27 Hein * Best * Pattison * Arena Colleen Kelley Chemistry Department Pima Community College © John Wiley and Sons, Inc. Version.
Lecture 1. Introduction about Biochemistry Biochemistry :- (from Greek : βίος, bios, "life") is the study of the chemical processes in living organisms.
Carbohydrates Carbohydrates (or saccharides) consist of only carbon, hydrogen and oxygen Carbohydrates come primarily from plants, however animals can.
Carbohydrates Larry J Scheffler Lincoln High School 2009 Version
Carbohydrates and Carbohydrate metabolism (Chemistry of Carbohydrate ) Objective: Understand classification and structure of carbohydrates Understand multistep.
Chapter 25 Biomolecules: Carbohydrates. 2 The Importance of Carbohydrates Carbohydrates are… –widely distributed in nature. –key intermediates in metabolism.
CARBOHYDRATES Carbohydrates are a major energy source for living organisms Carbohydrates always have a 1:2:1 ratio of carbon, hydrogen, and oxygen. Mitochondria.
Carbohydrates. Structure and Function How do we define a carbohydrate? aldehydes or ketones with multiple hydroxyl groups “hydrate” of carbon – C-H 2.
Oxidation of Carbohydrates Most living organisms that live in air obtain energy by oxidation of carbohydrates. Glucose is the most common simple carbohydrate.
CARBOHYDRATES STRUCTURES AND FUNCTIONS Erwin D. Abueva, M.D. August 2009.
Where does the NADH for oxidative phosphorylation come from? Cellular oxidation-reduction reactions such as dehydrogenations We will be spending quite.
CARBOHYDRATE CHEMISTRY DR AMINA TARIQ BIOCHEMISTRY.
Chapter 18: Carbohydrates
Heterocyclic Chemistry Chapter 5 Carbohydrates. Heterocyclic Chemistry Biological importance  Carbohydrates are compounds of tremendous biological importance:
Chapter 17: Carbohydrates 17.1 ─ Classes of Carbohydrates 17.2 and 17.3 ─ Stereochemistry and Fischer Projections 17.4 and 17.6 ─ Monosaccharides 17.5.
Chapter 20 Carbohydrates. Carbohydrates Carbohydrate: Carbohydrate: A polyhydroxyaldehyde or polyhydroxyketone, or a substance that gives these compounds.
Carbohydrates. Structure of Carbohydrates Properties of Carbohydrates Most abundant class of organic molecules Source: Photosynthesis Classification.
Chem 1152: Ch. 17 Carbohydrates. Introduction Biomolecules: Organic compounds produced by living organisms Carbohydrates Lipids Proteins Nucleic acids.
Accumulation of trans FA is an indication that hydrogenation is not proceeding to completion in the rumen. Accumulation of C18:2 bloks conversion of Trans-C18-1.
Carbohydrates.
Carbohydrates: What do you need to know?
7P1-1 Monosaccharides Monosaccharide stereoisomers Cyclic structures Reactions Examples and derivatives Di and oligosaccharides Polysaccharides Homo and.
CARBOHYDRATE CHEMISTRY SUURBAAR JENNIFER. I NTRODUCTION Carbohydrates are one of the three major classes of biological molecules. Carbohydrates are also.
CARBOHYDRATE CHEMISTRY UNIT-1 CHAPTER-2. I NTRODUCTION Carbohydrates are one of the three major classes of biological molecules. Carbohydrates are also.
Chemistry of Carbohydrates
CARBOHYDRATES Carbohydrates.
Lecture 7 Isomerism The total number of possible stereoisomers of one compound (n) is dependent on the number of stereogenic centers (c) in the molecule.
Introduction to Carbohydrates of medical importance
Carbohydrates Lincoln High School Version
Carbohydrate Structure and the Glycosidic Bond
Sample Problem 15.1 Monosaccharides
Chemistry 121 Winter 17 Introduction to Organic Chemistry and Biochemistry Instructor Dr. Upali Siriwardane (Ph.D. Ohio State)
CARBOHYDRATE CHEMISTRY
Lecture 18 Monday 3/20/17.
Carbohydrates: structure and Function
Carbohydrates.
Carbohydrates Dr. Gamal Gabr.
LincoLarry Jln High School
CHEMISTRY OF CARBOHYDRATES
CARBOHYDRATE CHEMISTRY
Chemistry 121 Winter 2016 Introduction to Organic Chemistry and Biochemistry Instructor Dr. Upali Siriwardane (Ph.D. Ohio State)
Organic Chemistry Second Edition Chapter 24 David Klein Carbohydrates
Department of Chemistry
Chapter 7 Chem 341 Suroviec Fall 2016.
Carbohydrates.
Carbohydrate Chemistry Part 1: Simple Carbohydrates
CARBOHYDRATE CHEMISTRY
3.2 MONOSACCHARIDES.
Chapter 8 (part 1) Carbohydrates.
Introduction to Carbohydrates of medical importance
Carbohydrates Carbohydrate: a polyhydroxyaldehyde or polyhydroxyketone, or a substance that gives these compounds on hydrolysis Monosaccharide: a carbohydrate.
Carbohydrates.
Presentation transcript:

Carbohydrates

Contents Dr. Nikhat Siddiqi 2 Functions of carbohydrates Classification of carbohydrates Isomers and epimers Stereochemistry Hemiacetal and hemiketals Fischer’s projection formula Haworth projection formula Chain and ring forms Chair conformations

Dr. Nikhat Siddiqi 3 Carbohydrates are one of the four major classes of biomolecules along with proteins, nucleic acids, and lipids. Carbohydrates are aldehyde or ketone compounds with multiple hydroxyl groups. They make up most of the organic matter on earth because of their extensive roles in all forms of life.

Functions of Carbohydrates Dr. Nikhat Siddiqi 4 Carbohydrates serve as energy stores, fuels, and metabolic intermediates. Second, ribose and deoxyribose sugars form part of the structural framework of RNA and DNA.RNADNA

Functions of Carbohydrates Dr. Nikhat Siddiqi 5 Third, polysaccharides are structural elements in the cell walls of bacteria and plants. Eg., Cellulose in plants Chitin in insects

Functions of Carbohydrates Dr. Nikhat Siddiqi 6 Fourth, carbohydrates are linked to many proteins and lipids, where they play key roles in mediating interactions among cells and interactions between cells and other elements in the cellular environment.

Classification Dr. Nikhat Siddiqi 7 Monosaccharides Disaccharides Oligosaccharides Polysaccharides According to the number of sugar units.

Monosaccharides Dr. Nikhat Siddiqi 8 Monosaccharides, the simplest carbohydrates, are aldehydes or ketones that have two or more hydroxyl groups; The empirical formula of many is (C-H 2 O)n, literally a “carbon hydrate.”

Monosaccharides Dr. Nikhat Siddiqi 9 Monosaccharides are important fuel molecules as well as building blocks for nucleic acids. The smallest monosaccharides, for which n = 3, are dihydroxyacetone and d- and l-glyceraldehyde.

Monosaccharides Dr. Nikhat Siddiqi 10 They are referred to as trioses (tri- for 3). Dihydroxyacetone is called a ketose because it contains a keto group, whereas glyceraldehyde is called an aldose because it contains an aldehyde group.

Dr. Nikhat Siddiqi 11 All carbohydrates contain at least one asymmetrical (chiral) carbon and are, therefore, optically active. In addition, carbohydrates can exist in either of two conformations, as determined by the orientation of the hydroxyl group about the asymmetric carbon farthest from the carbonyl.

Dr. Nikhat Siddiqi 12 With a few exceptions, those carbohydrates that are of physiological significance exist in the D- conformation. The mirror-image conformations, called enantiomers, are in the L-conformation.

Isomers and epimers Dr. Nikhat Siddiqi 13 Compounds that have the same chemical formula but have different structures are called isomers. For example, fructose, glucose, mannose, and galactose are all isomers of each other, having the same chemical formula, C 6 H 12 O 6.

Isomers and epimers Dr. Nikhat Siddiqi 14 Carbohydrate isomers that differ in configuration around only one specific carbon atom are defined as epimers of each other. For example, glucose and galactose are C-4 epimers—their structures differ only in the position of the -OH group at carbon 4.

C-2 and C-4 epimers and an isomer of glucose. Dr. Nikhat Siddiqi 15

Dr. Nikhat Siddiqi 16 Glucose and mannose are C-2 epimers. However, galactose and mannose are NOT epimers—they differ in the position of -OH groups at two carbons (2 and 4) and are, therefore, defined only as isomers.

Dr. Nikhat Siddiqi 17 The names of monosaccharides are frequently abbreviated; most common are three-letter abbreviations for simple monosaccharides (e.g., Gal, Glc, Man, Xyl, Fuc).monosaccharides Glycan-A generic term for any sugar or assembly of sugars, in free form or attached to another molecule, used interchangeably with saccharide or carbohydrate.sugarsugarssaccharidecarbohydrate

Stereochemistry Dr. Nikhat Siddiqi 18 Saccharides with identical functional groups but with different spatial configurations have different chemical and biological properties. Stereochemisty is the study of the arrangement of atoms in three-dimensional space.

Stereochemistry Dr. Nikhat Siddiqi 19 Stereoisomers are compounds in which the atoms are linked in the same order but differ in their spatial arrangement. Compounds that are mirror images of each other but are not identical, comparable to left and right shoes, are called enantiomers.

Enantiomers Dr. Nikhat Siddiqi 20 A special type of isomerism is found in the pairs of structures that are mirror images of each other. The vast majority of the sugars in humans are D-sugars. Enzymes known as racemases are able to interconvert D- and L-isomers.

Enantiomers Dr. Nikhat Siddiqi 21 These mirror images are called enantiomers, and the two members of the pair are designated as a D- and an L- sugar. In the D isomeric form, the OH group on the asymmetric carbon (a carbon linked to four different atoms or groups) farthest from the carbonyl carbon is on the right, while in the L-isomer it is on the left.

Monosaccharides Dr. Nikhat Siddiqi 22 The monosaccharides commonly found in humans are classified according to the number of carbons they contain in their backbone structures. The major monosaccharides contain four to six carbon atoms.

Classification Dr. Nikhat Siddiqi 23 # CarbonsNameExample 3TrioseGlyceraldehyde, Dihydroxyacetone 4TetroseErythrose 5PentoseRibose, Ribulose, Xylulose 6HexoseGlucose, Galactose, Mannose, Fructose 7HeptoseSedoheptulose 9NonoseNeuraminic acid, also called sialic acid

d-Aldoses containing three, four, five, and six carbon atoms Dr. Nikhat Siddiqi 24

d-Aldoses containing three, four, five, and six carbon atoms Dr. Nikhat Siddiqi 25

Dr. Nikhat Siddiqi 26 d-Aldoses contain an aldehyde group (shown in blue) and have the absolute configuration of d-glyceraldehyde at the asymmetric center (shown in red) farthest from the aldehyde group.

Dr. Nikhat Siddiqi 27 d-Ribose, the carbohydrate component of RNA, is a five- carbon aldose.RNA d-Glucose, d-mannose, and d-galactose are abundant six- carbon aldoses. d-glucose and d-mannose differ in configuration only at C-2. Sugars differing in configuration at a single asymmetric center are called epimers. Thus, d-glucose and d-mannose are epimeric at C-2; d-glucose and d-galactose are epimeric at C- 4.

Ketose Dr. Nikhat Siddiqi 28 Dihydroxyacetone is the simplest ketose. d-Fructose is the most abundant ketohexose.

d -Ketoses containing three- four, five, and six carbon Dr. Nikhat Siddiqi 29

Pentoses and Hexoses Cyclize to Form Furanose and Pyranose Rings Dr. Nikhat Siddiqi 30

Dr. Nikhat Siddiqi 31 The predominant forms of ribose, glucose, fructose, and many other sugars in solution are not open chains. Rather, the open-chain forms of these sugars cyclize into rings. In general, an aldehyde can react with an alcohol to form a hemiacetal.

Dr. Nikhat Siddiqi 32 For an aldohexose such as glucose, the C-1 aldehyde in the open-chain form of glucose reacts with the C-5 hydroxyl group to form an intramolecular hemiacetal. The resulting cyclic hemiacetal, a six- membered ring, is called pyranose because of its similarity to pyran.

Dr. Nikhat Siddiqi 33 Similarly, a ketone can react with an alcohol to form a hemiketal.

Dr. Nikhat Siddiqi 34 The C-2 keto group in the open-chain form of a ketohexose, such as fructose, can form an intramolecular hemiketal by reacting with either the C-6 hydroxyl group to form a six- membered cyclic hemiketal or the C-5 hydroxyl group to form a five-membered cyclic hemiketal. The five-membered ring is called a furanose because of its similarity to furan

Furan & Pyran Dr. Nikhat Siddiqi 35

Dr. Nikhat Siddiqi 36 The depictions of glucopyranose and fructofuranose shown are Haworth projections.

Chain and Ring forms Dr. Nikhat Siddiqi 37 Many simple sugars can exist in a chain form or a ring form, as illustrated by the hexoses above. The ring form is favored in aqueous solutions, and the mechanism of ring formation is similar for most sugars. The glucose ring form is created when the oxygen on carbon number 5 links with the carbon comprising the carbonyl group (carbon number 1) and transfers its hydrogen to the carbonyl oxygen to create a hydroxyl group.

Chain and Ring forms Dr. Nikhat Siddiqi 38 The rearrangement produces alpha glucose when the hydroxyl group is on the opposite side of the -CH 2 OH group, or beta glucose when the hydroxyl group is on the same side as the -CH 2 OH group. Isomers, such as these, which differ only in their configuration about their carbonyl carbon atom are called anomers.

Dr. Nikhat Siddiqi 39

Dr. Nikhat Siddiqi 40 a-D-glucose and b-D-glucose differ by the positioning of hydroxyl group on C1 carbon Both a-D-glucose serves as basic units of glycogen and starch b-D-glucose is the basic unit of cellulose

Chain and Ring forms Dr. Nikhat Siddiqi 41 The little D in the name derives from the fact that natural glucose is dextrorotary, i.e., it rotates polarized light to the right, but it now denotes a specific configuration. Monosaccharides forming a five-sided ring, like ribose, are called furanoses. Those forming six-sided rings, like glucose, are called pyranoses.

Dr. Nikhat Siddiqi 42

Dr. Nikhat Siddiqi 43

Dr. Nikhat Siddiqi 44 The Haworth representations are preferably drawn with the ring oxygen atom at the top (for furanose) or the top right- hand corner (for pyranose) of the structure; the numbering of the ring carbons increases in a clockwise direction.furanosepyranose

Chair Conformation Dr. Nikhat Siddiqi 45 The planar Haworth structures are distorted representations of the actual molecules. The preferred conformation of a pyranose ring is the chair conformation, similar to the structure of cyclohexane. pyranose

β -D-Glucose in Haworth projection and in its 4 C 1 and 1 C 4 chair conformationsHaworth projection Dr. Nikhat Siddiqi 46

Dr. Nikhat Siddiqi 47 An additional asymmetric center is created when a cyclic hemiacetal is formed. In glucose, C-1, the carbonyl carbon atom in the open-chain form, becomes an asymmetric center. Thus, two ring structures can be formed: α -d-glucopyranose and β - d-glucopyranose.

Anomers Dr. Nikhat Siddiqi 48 For d sugars drawn as Haworth projections, the designation α means that the hydroxyl group attached to C- 1 is below the plane of the ring; β means that it is above the plane of the ring. The C-1 carbon atom is called the anomeric carbon atom, and the α and β forms are called anomers.

Dr. Nikhat Siddiqi 49 The same nomenclature applies to the furanose ring form of fructose, except that α and β refer to the hydroxyl groups attached to C-2, the anomeric carbon atom.

Reducing sugars Dr. Nikhat Siddiqi 50 If the oxygen on the anomeric carbon of a sugar is not attached to any other structure, that sugar can act as a reducing agent and is termed a reducing sugar. Such sugars can react with chromogenic agents (for example, Benedict's reagent or Fehling's solution) causing the reagent to be reduced and colored, with the anomeric carbon of the sugar becoming oxidized.

Dr. Nikhat Siddiqi 51 The End