Use the substitution method

Slides:



Advertisements
Similar presentations
A f r i d i i m r a n S O L V IN G S Y ST E M S O F E Q U A T I O N S A f r i d i i m r a n
Advertisements

Simultaneous Equations
The student will be able to:
8-2: Solving Systems of Equations using Substitution
Solve by Substitution: Isolate one variable in an equation
Revision Simultaneous Equations I
Solve a simple absolute value equation
Do Now: Pass out calculators.
Use addition to eliminate a variable
10.7 Solving Quadratic Systems
Solve an equation by multiplying by a reciprocal
4.7 Complete the Square.
EXAMPLE 3 Standardized Test Practice SOLUTION
Solve an equation with variables on both sides
EXAMPLE 1 Solve a quadratic equation having two solutions Solve x 2 – 2x = 3 by graphing. STEP 1 Write the equation in standard form. Write original equation.
Solve a linear-quadratic system by graphing
Solving a System of Equations by ELIMINATION. Elimination Solving systems by Elimination: 1.Line up like terms in standard form x + y = # (you may have.
Do Now Pass out calculators. Solve the following system by graphing: Graph paper is in the back. 5x + 2y = 9 x + y = -3 Solve the following system by using.
EXAMPLE 1 Write an equation of a circle Write the equation of the circle shown. The radius is 3 and the center is at the origin. x 2 + y 2 = r 2 x 2 +
Solve a radical equation
3.2 Solving Systems Algebraically
Unit 1.3 USE YOUR CALCULATOR!!!.
Substitute 0 for y. Write original equation. To find the x- intercept, substitute 0 for y and solve for x. SOLUTION Find the x- intercept and the y- intercept.
Substitute 0 for y. Write original equation. To find the x- intercept, substitute 0 for y and solve for x. SOLUTION Find the x- intercept and the y- intercept.
Goal: Solve a system of linear equations in two variables by the linear combination method.
Another method for solving systems of equations is elimination
SOLVING SYSTEMS ALGEBRAICALLY SECTION 3-2. SOLVING BY SUBSTITUTION 1) 3x + 4y = 12 STEP 1 : SOLVE ONE EQUATION FOR ONE OF THE VARIABLES 2) 2x + y = 10.
3-2 Day 2 Solving Systems Algebraically: Elimination Method Objective: I can solve a system of equations using the elimination method.
EXAMPLE 1 Solve a system graphically Graph the linear system and estimate the solution. Then check the solution algebraically. 4x + y = 8 2x – 3y = 18.
3-2 Solving Linear Systems Algebraically Objective: CA 2.0: Students solve system of linear equations in two variables algebraically.
Unit 1.3 USE YOUR CALCULATOR!!! MM3A5c. Unit 1 – Algebra: Linear Systems, Matrices, & Vertex- Edge Graphs  1.3 – Solve Linear Systems Algebraically 
Do Now (3x + y) – (2x + y) 4(2x + 3y) – (8x – y)
EXAMPLE 1 Solve a two-step equation Solve + 5 = 11. x 2 Write original equation. + 5 = x – 5 = x 2 11 – 5 Subtract 5 from each side. = x 2 6 Simplify.
Use the substitution method
Solve Linear Systems by Substitution Students will solve systems of linear equations by substitution. Students will do assigned homework. Students will.
Multiply one equation, then add
Solving Linear Systems Algebraically KoreyAnne Smith.
EXAMPLE 4 Solve linear systems with many or no solutions Solve the linear system. a.x – 2y = 4 3x – 6y = 8 b.4x – 10y = 8 – 14x + 35y = – 28 SOLUTION a.
3.3 Solving Linear Systems by Linear Combination 10/12/12.
EXAMPLE 1 Solve a system graphically Graph the linear system and estimate the solution. Then check the solution algebraically. 4x + y = 8 2x – 3y = 18.
EXAMPLE 1 Solve an equation with two real solutions Solve x 2 + 3x = 2. x 2 + 3x = 2 Write original equation. x 2 + 3x – 2 = 0 Write in standard form.
EXAMPLE 1 Write an equation of a circle Write the equation of the circle shown. SOLUTION The radius is 3 and the center is at the origin. x 2 + y 2 = r.
3.2 Solve Linear Systems Algebraically Algebra II.
Chapter 3 Section 2. EXAMPLE 1 Use the substitution method Solve the system using the substitution method. 2x + 5y = –5 x + 3y = 3 Equation 1 Equation.
Solving a System of Equations by ELIMINATION. Elimination Solving systems by Elimination: 1.Line up like terms in standard form x + y = # (you may have.
6) x + 2y = 2 x – 4y = 14.
1. Add: 5 x2 – 1 + 2x x2 + 5x – 6 ANSWERS 2x2 +7x + 30
EXAMPLE 2 Rationalize denominators of fractions Simplify
Solve Systems of Equations by Elimination
Solve an equation by multiplying by a reciprocal
Solve an equation with two real solutions
3-2: Solving Systems of Equations using Substitution
THE SUBSTITUTION METHOD
Solve a system of linear equation in two variables
3-2: Solving Systems of Equations using Substitution
Solving Systems of Equations using Substitution
3-2: Solving Systems of Equations using Substitution
Methods to Solving Systems of Equations
Solving Systems of Equations
Systems of Equations Solve by Graphing.
Solve an inequality using subtraction
3-2: Solving Systems of Equations using Substitution
Solving Systems of Equations by Elimination Part 2
Example 2B: Solving Linear Systems by Elimination
3-2: Solving Systems of Equations using Substitution
3-2: Solving Systems of Equations using Substitution
The student will be able to:
3-2: Solving Systems of Equations using Substitution
3-2: Solving Systems of Equations using Substitution
The Substitution Method
Presentation transcript:

Use the substitution method EXAMPLE 1 Use the substitution method Solve the system using the substitution method. 2x + 5y = –5 Equation 1 x + 3y = 3 Equation 2 SOLUTION STEP 1 Solve Equation 2 for x. x = –3y + 3 Revised Equation 2

Use the substitution method EXAMPLE 1 Use the substitution method STEP 2 Substitute the expression for x into Equation 1 and solve for y. 2x +5y = –5 Write Equation 1. 2(–3y + 3) + 5y = –5 Substitute –3y + 3 for x. y = 11 Solve for y. STEP 3 Substitute the value of y into revised Equation 2 and solve for x. x = –3y + 3 Write revised Equation 2. x = –3(11) + 3 Substitute 11 for y. x = –30 Simplify.

Use the substitution method EXAMPLE 1 Use the substitution method The solution is (– 30, 11). ANSWER CHECK Check the solution by substituting into the original equations. 2(–30) + 5(11) –5 = ? Substitute for x and y. = ? –30 + 3(11) 3 –5 = –5 Solution checks. 3 = 3

Use the elimination method EXAMPLE 2 Use the elimination method Solve the system using the elimination method. 3x – 7y = 10 Equation 1 6x – 8y = 8 Equation 2 SOLUTION STEP 1 Multiply Equation 1 by – 2 so that the coefficients of x differ only in sign. 3x – 7y = 10 –6x + 14y = 220 6x – 8y = 8 6x – 8y = 8

Use the elimination method EXAMPLE 2 Use the elimination method STEP 2 Add the revised equations and solve for y. 6y = –12 y = –2 STEP 3 Substitute the value of y into one of the original equations. Solve for x. 3x – 7y = 10 Write Equation 1. 3x – 7(–2) = 10 Substitute –2 for y. 3x + 14 = 10 Simplify. x = 4 3 – Solve for x.

EXAMPLE 2 Use the elimination method The solution is ( , –2) 4 3 – ANSWER CHECK You can check the solution algebraically using the method shown in Example 1. You can also use a graphing calculator to check the solution.

GUIDED PRACTICE for Examples 1 and 2 Solve the system using the substitution or the elimination method. 1. 4x + 3y = –2 x + 5y = –9 2. 3x + 3y = –15 5x – 9y = 3 The solution is (1,–2). ANSWER The solution is ( , –2) 3 – ANSWER

GUIDED PRACTICE for Examples 1 and 2 Solve the system using the substitution or the elimination method. 3. 3x – 6y = 9 –4x + 7y = –16 ANSWER The solution is (11, 4)