علیّت در اپیدمیولوژی مطالب اصلی مورد بحث:

Slides:



Advertisements
Similar presentations
You have been given a mission and a code. Use the code to complete the mission and you will save the world from obliteration…
Advertisements

Pump head syndrome On May 6, 1953, the heart-lung machine was first used successfully on 18 year old Cecelia Bavolek. In the six months before surgery,
Chapter 1 The Study of Body Function Image PowerPoint
1 Copyright © 2010, Elsevier Inc. All rights Reserved Fig 2.1 Chapter 2.
Causation When do we have enough evidence? Sam Bracebridge.
Synthesis: Causal Inference
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Title Subtitle.
DIVIDING INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
Addition Facts
Year 6 mental test 5 second questions
ZMQS ZMQS
1 Epidemiology - Lecture #10 CHP 646 Dr. Holly Gaff.
ABC Technology Project
RANDOMIZED CONTROLLED TRIAL
Evidence for Complex Causes
Squares and Square Root WALK. Solve each problem REVIEW:
Causation Jay M. Fleisher.
Chapter 5 Test Review Sections 5-1 through 5-4.
GG Consulting, LLC I-SUITE. Source: TEA SHARS Frequently asked questions 2.
Addition 1’s to 20.
25 seconds left…...
Week 1.
We will resume in: 25 Minutes.
TASK: Skill Development A proportional relationship is a set of equivalent ratios. Equivalent ratios have equal values using different numbers. Creating.
How Cells Obtain Energy from Food
Deriving Biological Inferences From Epidemiologic Studies.
Causality Causality Hill’s Criteria Cross sectional studies.
Causality Inferences. Objectives: 1. To understand the concept of risk factors and outcome in a scientific way. 2. To understand and comprehend each and.
Causal Inference in Epidemiology
Epidemiology Kept Simple
Microbiology Koch and establishing causal links between microrganisms and disease.
Epidemiology & Critical Thinking D. Morse st Avenue Tel: Office Hours: 4:00-5:00 (M & W)
Association to Causation. Sequence of Studies Clinical observations Available data Case-control studies Cohort studies Randomized trials.
GerstmanGerstmanChapter 21GerstmanChapter 21 Epidemiology Chapter 2 Causal Concepts.
Dr. Zahid Ahmad Butt. Cause “An antecedent event, condition, or characteristic that was necessary for the occurrence of the disease at the moment it occurred,
1 Causation in Epidemiological Studies Dr. Birgit Greiner Senior Lecturer.
Dr. Amna Rehana Siddiqui Department of Family and Community Medicine
Web of Causation; Exposure and Disease Outcomes Thomas Songer, PhD Basic Epidemiology South Asian Cardiovascular Research Methodology Workshop.
Causal inference Afshin Ostovar Bushehr University of Medical Sciences Bushehr, /4/20151.
Measures of Association
Mother and Child Health: Research Methods G.J.Ebrahim Editor Journal of Tropical Pediatrics, Oxford University Press.
Lung Cancer Molecular Pathology of Cancer Boot Camp January 4, 2012 Jennifer Rider, ScD.
Causation. Associations may be due to Chance (random error) statistics are used to reduce it by appropriate design of the study statistics are used to.
Family and Community Medicine Department King Saud University Models of Disease Causation.
Causation and association Dr. Salwa Tayel Family and Community Medicine Department King Saud University.
دکتر حسین صافی زاده بهمن 1389 دکتر حسین صافی زاده بهمن 1389 منبع :درسنامه طب پیشگیری و پزشکی اجتماعی پارک جلد اول ،فصل اول بسم الله الرحمن الرحیم اندازه.
Showing Cause, Introduction to Study Design Principles of Epidemiology.
From association to causation
Chapter 2: General Concepts Chapter 2 Causal Concepts
Chapter 9 Causality.
© 2010 Jones and Bartlett Publishers, LLC
By Hatim Jaber MD MPH JBCM PhD
Journal Club Notes.
Causation Analysis in Occupational and Environmental Medicine
Showing Cause, Introduction to Study Design
Association & Causation in epidemiological studies
نظریه رفتار برنامه ريزي شده Theory of Planned Behavior
دانشگاه علوم پزشکی و خدمات بهداشتی درمانی رفسنجان
How can we identify a novel carcinogen?
Causality assessment Theoretical background
نظریه رفتار برنامه ريزي شده Theory of Planned Behavior
Association to Causation
Causation Learning Objectives
The Epidemiologic Approach to Causation
Epidemiological triad Agent, Host, Environment Model
Critical Appraisal วิจารณญาณ
Relationship Relation: Association: real and spurious Statistical:
RISK ASSESSMENT, Association and causation
Presentation transcript:

علیّت در اپیدمیولوژی مطالب اصلی مورد بحث: ارتباط و انواع آن در اپیدمیولوژی ارتباط علیّتی و انواع آن در اپیدمیولوژی انواع مدل های علیّت در اپیدمیولوژی معیارهای قضاوت درباره علیّت

What is a Cause? Something which has an effect (or Difference). An event, condition, characteristic (or a combination) which plays an important role/regular/predicable change in occurrence of the outcome (e.g. smoking and lung cancer)

Characteristics of a cause Must precede the effect 2. Can be either host or environmental factors (e.g., characteristics, conditions, actions of individuals, events, natural, social or economic phenomena) 3. Positive (presence of a causative exposure) or negative (lack of a preventive exposure)

ارتباط و علیت (Association & Causation) ارتباط: همراهي قوي دو متغير (مثلاً بیماری و عامل مورد نظر) به اندازه اي كه نتوان آن را فقط به شانس نسبت داد و بيش از آنچه از شانس انتظار مي رود، با هم اتفاق بيفتند. Note: Association is not equal to causation. If the rooster crows at the break of dawn, then the rooster caused the sun to rise?!!!

علت لازم و کافی Necessary and sufficient cause Necessary cause: "A causal factor whose presence is required for the occurrence of the effect”. Sufficient cause: A causal factor whose presence is not required for the occurrence of the effect”. Any given cause may be necessary, sufficient, both, neither

از همبستگی تا علیّت ساختگی غیر مستقیم مستقیم «علیّتی» انواع رابطه: رابطه علیّتی یک به یک رابطه علیّتی چند عاملی

اثر مستقل یا اثر تقويت كننده اي ( Independent or synergistic effect) سیگار سرطان ریه آزبستوز سرطان ریه آلودگی هوا سرطان ریه سیگار + آزبستوز + آلودگی هوا سرطان ریه

مدل های علیّت در اپیدمیولوژی مدل مثلث اپیدمیولوژی مدل چرخ مدل شبکه علیّت

The Epidemiology Triangle

Host Factors ویژگی های فردی مؤثر بر مواجهه، حساسیت و یا پاسخ فرد به عامل بیماری زا سن، جنس، ژنتیک، نژاد، قومیت، مذهب، وضعیت تأهل، وضعیت اقتصادی- اجتماعی، عادات و رفتارها، ساختار آناتومیک و عملکرد فیزیولوژیک بدن، وضعیت ایمنولوژیک و تغذیه، ابتلا به بیماری های دیگر، مصرف دارو و ...

Environmental factors عوامل محیطی مؤثر بر عامل بیماریزا و شانس مواجهه میزبان با عامل بیماریزا عوامل فیزیکی: درجه حرارت، رطوبت، سروصدا عوامل بیولوژیک: ناقل های بیماری ها عوامل اقتصادی- اجتماعی: ازدحام جمعیت، دسترسی به خدمات بهداشتی، بهسازی محیط

Agent factors عوامل بیولوژیک: میکرو ارگانیسم ها عوامل تغذیه ای: نقص یا زیادی مواد مغذی عوامل فیزیکی: تروما، پرتوها عوامل شیمیایی: داروها، مونوکسید کربن، سموم

Biological Environment The Wheel of Causation Social Environment Biological Environment Host (human) Genetic Core Physical Environment

Web of Causation (Spider web) social organization phenotype behaviour microbes Disease genes environment Unknown factors workplace

Web of Causation - CHD CHD stress genetic susceptibility medications smoking lipids CHD gender physical activity Unknown factors inflammation blood pressure 15

Time for a break, Be happy

Causal "guidelines" suggested by Sir AB Hill (1965) Temporality Strength of the association Consistency Biological gradient Experiment Plausibility Coherence Specificity Analogy Sir Austin Bradford Hill(1897-1991)

1. Temporality The causal factor must precede the disease in time. This is the only one of Hill's criteria that everyone agrees with. Prospective studies do a good job establishing the correct temporal relationship between an exposure and a disease.

2. Strength of the association Strong associations are more likely to be causal because they are unlikely to be due entirely to bias and confounding. Example: RR of lung cancer in smokers vs. non-smokers = 9 RR of lung cancer in heavy vs. non-smokers = 20 Weak associations may be causal but it is harder to rule out bias and confounding.

3. Consistency The association is observed repeatedly in different persons, places, times, and circumstances. Replicating the association in different samples, with different study designs, and different investigators gives evidence of causation. Note: Sometimes there are good reasons why study results differ. For example, one study may have looked at low level exposures while another looked at high level exposures.

4. Biological Gradient A “dose-response” relationship between exposure and disease. Example: Lung cancer death rates rise with the number of cigarettes smoked. Some exposures might not have a "dose-response" effect but rather a "threshold effect" below which these are no adverse outcomes.

5. Experiment Investigator-initiated intervention that modifies the exposure through prevention, treatment, or removal should result in less disease. Example: Smoking cessation programs result in lower lung cancer rates. Provides strong evidence for causation, but most epidemiologic studies are observational.

6/7. Plausibility / Coherence Biological or social model exists to explain the association. Association does not conflict with current knowledge of natural history and biology of disease. Example: Cigarettes contain many carcinogenic substances.

8. Specificity A single exposure should cause a single disease. This is a hold-over from the concepts of causation that were developed for infectious diseases. There are many exceptions to this. When present, specificity, does provide evidence of causality, but its absence does not preclude causation.

9. Analogy Has a similar relationship been observed with another exposure and/ or disease? Example: Effects of Alcohol on the fetus provide analogy for effects of similar substances on the fetus.

Thank you for your kind attention