First International Workshop on Video Segmentation Organizers: Thomas Brox, University of Freiburg Fabio Galasso, OSRAM Corp. Tech. Research, Max Planck.

Slides:



Advertisements
Similar presentations
Using Strong Shape Priors for Multiview Reconstruction Yunda SunPushmeet Kohli Mathieu BrayPhilip HS Torr Department of Computing Oxford Brookes University.
Advertisements

Slide 1 Insert your own content. Slide 2 Insert your own content.
1 Copyright © 2010, Elsevier Inc. All rights Reserved Fig 3.1 Chapter 3.
Chapters 1 & 2 Theorem & Postulate Review Answers
0 - 0.
Addition Facts
CS4026 Formal Models of Computation Running Haskell Programs – power.
1 Hierarchical Part-Based Human Body Pose Estimation * Ramanan Navaratnam * Arasanathan Thayananthan Prof. Phil Torr * Prof. Roberto Cipolla * University.
Semantic Contours from Inverse Detectors Bharath Hariharan et.al. (ICCV-11)
Spatio-Temporal Relationship Match: Video Structure Comparison for Recognition of Complex Human Activities M. S. Ryoo and J. K. Aggarwal ICCV2009.
5.9 + = 10 a)3.6 b)4.1 c)5.3 Question 1: Good Answer!! Well Done!! = 10 Question 1:
Regionlets for Generic Object Detection
Good afternoon everyone
Addition 1’s to 20.
Probabilistic Tracking and Recognition of Non-rigid Hand Motion
Test B, 100 Subtraction Facts
Week 1.
First International Workshop on Video Segmentation Organizers: Thomas Brox, University of Freiburg Fabio Galasso, OSRAM Corp. Tech. Research, Max Planck.
Articulated People Detection and Pose Estimation: Reshaping the Future
Automatic Image Annotation Using Group Sparsity
Foreground Focus: Finding Meaningful Features in Unlabeled Images Yong Jae Lee and Kristen Grauman University of Texas at Austin.
Spectral graph reduction for image and streaming video segmentation Fabio Galasso 1 Margret Keuper 2 Thomas Brox 2 Bernt Schiele 1 1 Max Planck Institute.
Limin Wang, Yu Qiao, and Xiaoou Tang
Motion Coherent Tracking with Multi-Label MRF Optimization David Tsai Matthew Flagg James M. Rehg Computational Perception Lab School of Interactive Computing.
Shape Sharing for Object Segmentation
Scene Labeling Using Beam Search Under Mutex Constraints ID: O-2B-6 Anirban Roy and Sinisa Todorovic Oregon State University 1.
1School of CS&Eng The Hebrew University
Patch to the Future: Unsupervised Visual Prediction
Large Scale Visual Recognition Challenge (ILSVRC) 2013: Detection spotlights.
Juergen Gall Action Recognition.
Silhouette Lookup for Automatic Pose Tracking N ICK H OWE.
Robust Object Tracking via Sparsity-based Collaborative Model
Object-centric spatial pooling for image classification Olga Russakovsky, Yuanqing Lin, Kai Yu, Li Fei-Fei ECCV 2012.
Boundary Preserving Dense Local Regions
Optimization & Learning for Registration of Moving Dynamic Textures Junzhou Huang 1, Xiaolei Huang 2, Dimitris Metaxas 1 Rutgers University 1, Lehigh University.
Computer Vision & Biomimetic Object Recognition Bruce A. Draper Department of Computer Science January 28, 2008.
Region-based Voting Exemplar 1 Query 1 Exemplar 2.
CS294‐43: Visual Object and Activity Recognition Prof. Trevor Darrell Spring 2009 March 17 th, 2009.
Perceptual Organization: Segmentation and Optical Flow.
On the Object Proposal Presented by Yao Lu
Hierarchical Subquery Evaluation for Active Learning on a Graph Oisin Mac Aodha, Neill Campbell, Jan Kautz, Gabriel Brostow CVPR 2014 University College.
What, Where & How Many? Combining Object Detectors and CRFs
Describing People: A Poselet-Based Approach to Attribute Classification Lubomir Bourdev 1,2 Subhransu Maji 1 Jitendra Malik 1 1 EECS U.C. Berkeley 2 Adobe.
Unsupervised Object Segmentation with a Hybrid Graph Model (HGM) Reporter: 鄭綱 (6/14)
Multi-task Low-rank Affinity Pursuit for Image Segmentation Bin Cheng, Guangcan Liu, Jingdong Wang, Zhongyang Huang, Shuicheng Yan (ICCV’ 2011) Presented.
CVPR 2013 Diversity Tutorial Closing Remarks: What can we do with multiple diverse solutions? Dhruv Batra Virginia Tech.
Learning the Appearance and Motion of People in Video Hedvig Sidenbladh, KTH Michael Black, Brown University.
Image Segmentation Superpixel methods Speaker: Hsuan-Yi Ko.
Skeleton Based Action Recognition with Convolutional Neural Network
Object Recognition by Integrating Multiple Image Segmentations Caroline Pantofaru, Cordelia Schmid, Martial Hebert ECCV 2008 E.
ICCV 2007 Optimization & Learning for Registration of Moving Dynamic Textures Junzhou Huang 1, Xiaolei Huang 2, Dimitris Metaxas 1 Rutgers University 1,
Hierarchical Motion Evolution for Action Recognition Authors: Hongsong Wang, Wei Wang, Liang Wang Center for Research on Intelligent Perception and Computing,
Learning Image Statistics for Bayesian Tracking Hedvig Sidenbladh KTH, Sweden Michael Black Brown University, RI, USA
Recent developments in object detection
Data Driven Attributes for Action Detection
Part II Applications of GPCA in Computer Vision
Regularizing Face Verification Nets To Discrete-Valued Pain Regression
Saliency detection with background model
Generalized Principal Component Analysis CVPR 2008
Action Recognition ECE6504 Xiao Lin.
Exemplar-SVM for Action Recognition
ICCV Hierarchical Part Matching for Fine-Grained Image Classification
IEEE ICIP Feature Normalization for Part-Based Image Classification
Jia-Bin Huang Virginia Tech ECE 6554 Advanced Computer Vision
Object Detection + Deep Learning
Liyuan Li, Jerry Kah Eng Hoe, Xinguo Yu, Li Dong, and Xinqi Chu
Iterative Crowd Counting
“Traditional” image segmentation
Visual Grounding 专题报告 Lejian Ren 4.23.
Initial Progress Report
Presentation transcript:

First International Workshop on Video Segmentation Organizers: Thomas Brox, University of Freiburg Fabio Galasso, OSRAM Corp. Tech. Research, Max Planck Institute for Informatics Fuxin Li, Georgia Institute of Technology James Matthew Rehg, Georgia Institute of Technology Bernt Schiele, Max Planck Institute for Informatics

First International Workshop on Video Segmentation | Remarks Panel Discussion 2 Irfan Essa Georgiatech Jue Wang Adobe Systems René Vidal Johns Hopkins University Cristian Sminchisescu Lund University Vittorio Ferrari University of Edinburgh Michael Black MPI Intelligent Systems

First International Workshop on Video Segmentation | Remarks Recap Fast growing interest ‣ [Ochs and Malik, ECCV’10], [Vazquez-Reina et al. ECCV’10], [Lezama et al. CVPR’11], [Ochs and Brox ICCV’11], [Lee et al. ICCV’11], [Godec et al. ICCV’11], [Sundaram et al. ICCV’11], [Fragkiadaki and Shi CVPR’12], [Xu and Corso CVPR’12], [Ma and Latecki CVPR’12], [Dragon et al. ECCV’12], [Lee et al. ECCV’12], [Xu et al. ECCV’12], [Zhang et al. CVPR’13], [Chang et al. CVPR’13], [Palou and Salembier CVPR’13], [Tang et al. CVPR’13], [Reso et al. ICCV’13], [Papazoglou and Ferrari ICCV’13], [Van den Bergh et al. ICCV’13], [Banica et al. ICCV’13], [Li et al. ICCV’13], [Jain et al. ICCV’13], [Levinshtein et al. ACCV’10], [Maire and Yu ICCV’13], [Badrinarayanan et al. IJCV’13], [Rota Bulo‘ and Kontschieder CVPR’14], [Chang et al. CVPR’14], [Kae et al. CVPR’14], [Galasso et al. CVPR’14] … 3

First International Workshop on Video Segmentation | Remarks Recap Diverse problem statements ‣ Separating foreground and background [Papazoglou and Ferrari ICCV’13], [Zhang et al. CVPR’13], [Van den Bergh et al. ICCV’13] ‣ Multiple object segmentation [Vazquez-Reina et al. ECCV’10], [Lee et al. ECCV’12], [Li et al. ICCV’13] ‣ Identifying moving objects [Fragkiadaki and Shi CVPR’12], [Lezama et al. CVPR’11], [Ochs and Brox ICCV’11], [Dragon et al. ECCV’12] ‣ Defining an over-complete supervoxel representation [Chang et al. CVPR’13], [Reso et al. ICCV’13], [Xu and Corso CVPR’12] ‣ Computing hierarchical sets of coarse-to-fine video segmentations [Levinshtein et al. ACCV’10], [Palou and Salembier CVPR’13], [Sundaram et al. ICCV’11], [Xu et al. ECCV’12], [Maire and Yu ICCV’13], [Jain et al. ICCV’13], [Galasso et al. CVPR’14] ‣ Ranking segmentation proposals [Banica et al. ICCV’13], [Lee et al. ICCV’11], [Ma and Latecki CVPR’12], [Zhang et al. CVPR’13] ‣ Supervised/unsupervised, semi-automatic [Badrinarayanan et al. IJCV’13], [Godec et al. ICCV’11], [Tang et al. CVPR’13] ‣ Semantic segmentation [Rota Bulo‘ and Kontschieder CVPR’14], [Chang et al. CVPR’14], [Kae et al. CVPR’14] 4

First International Workshop on Video Segmentation | Remarks Recap Different benchmarks 5 … Motion segmentation FBMS Unified benchmark VSB100 (Video) Object proposals SegTrack v2 Supervoxel segmentation LIBSVX

First International Workshop on Video Segmentation | Remarks VSB100: General Task 6 Simple baseline Galasso et al. ACCV 12 Grundmann et al. CVPR 10 Ochs-Brox ICCV 11 Corso et al. TMI 08 Xu et al. ECCV 12 Volume precision-recall

First International Workshop on Video Segmentation | Remarks VSB100: Motion Subtask 7 Galasso et al. ACCV 12 Grundmann et al. CVPR 10 Ochs-Brox ICCV 11 Simple baseline Volume precision-recall

First International Workshop on Video Segmentation | Remarks Panel discussion Video segmentation underperforms wrt image seg. and motion ‣ How should we tackle the temporal dimension? ‣ (Irfan and Michael) Is video segmentation a standalone problem? ‣ How about recognition and reconstruction? ‣ (Vittorio and Cristian) What subtasks should we evaluate on? ‣ general tasks, motion subtask, object proposals, superpixels, high precision (cf. Adobe needs us!) ‣ (Jue and René) 8