Do Now: Pass out calculators.

Slides:



Advertisements
Similar presentations
7.2 Solve Linear Systems by Substitution
Advertisements

Simultaneous Equations
8-2: Solving Systems of Equations using Substitution
Warm-up: Solve the equation. Answers.
4.6 Perform Operations with Complex Numbers
Solve a simple absolute value equation
Use the substitution method
3.3 Solving Multi-Step Equations. A multi-step equation requires more than two steps to solve. To solve a multi-step equation: you may have to simplify.
Use addition to eliminate a variable
Solve an equation by multiplying by a reciprocal
EXAMPLE 4 Solve proportions SOLUTION a x 16 = Multiply. Divide each side by 10. a x 16 = = 10 x5 16 = 10 x80 = x8 Write original proportion.
Solve an equation with variables on both sides
Solve an equation by combining like terms
EXAMPLE 1 Solve a quadratic equation having two solutions Solve x 2 – 2x = 3 by graphing. STEP 1 Write the equation in standard form. Write original equation.
Solve an absolute value equation EXAMPLE 2 SOLUTION Rewrite the absolute value equation as two equations. Then solve each equation separately. x – 3 =
EXAMPLE 3 Solve a multi-step problem Many businesses pay website hosting companies to store and maintain the computer files that make up their websites.
Solve an equation using subtraction EXAMPLE 1 Solve x + 7 = 4. x + 7 = 4x + 7 = 4 Write original equation. x + 7 – 7 = 4 – 7 Use subtraction property of.
Standardized Test Practice
Solve a linear-quadratic system by graphing
Do Now Pass out calculators. Solve the following system by graphing: Graph paper is in the back. 5x + 2y = 9 x + y = -3 Solve the following system by using.
EXAMPLE 1 Collecting Like Terms x + 2 = 3x x + 2 –x = 3x – x 2 = 2x 1 = x Original equation Subtract x from each side. Divide both sides by x2x.
Standardized Test Practice
Standardized Test Practice
Solve a radical equation
3.2 Solving Systems Algebraically
EXAMPLE 3 Solve a multi-step problem Many businesses pay website hosting companies to store and maintain the computer files that make up their websites.
Solve Equations with Variables on Both Sides
EXAMPLE 2 Rationalize denominators of fractions Simplify
Solve a logarithmic equation
Solve an equation by combining like terms EXAMPLE 1 8x – 3x – 10 = 20 Write original equation. 5x – 10 = 20 Combine like terms. 5x – =
Solve an absolute value equation EXAMPLE 2 SOLUTION Rewrite the absolute value equation as two equations. Then solve each equation separately. x – 3 =
Solve a two-step inequality EXAMPLE 1 3x – 7 < 8 Write original inequality. 3x < 15 Add 7 to each side. x < 5 Divide each side by 3. ANSWER The solutions.
Example 3 Solving an Equation Using Addition The solution is ANSWER Original equation 13=4.5c– Add 4.5 to each side. (Addition property of equality)
Solve an equation using addition EXAMPLE 2 Solve x – 12 = 3. Horizontal format Vertical format x– 12 = 3 Write original equation. x – 12 = 3 Add 12 to.
Example 1 Solving Two-Step Equations SOLUTION a. 12x2x + 5 = Write original equation. 112x2x + – = 15 – Subtract 1 from each side. (Subtraction property.
Solving Linear Equations Substitution. Find the common solution for the system y = 3x + 1 y = x + 5 There are 4 steps to this process Step 1:Substitute.
Solve Linear Systems by Substitution
Use the substitution method
Solve Linear Systems by Substitution January 28, 2014 Pages
Solve Linear Systems by Substitution Students will solve systems of linear equations by substitution. Students will do assigned homework. Students will.
Multiply one equation, then add
Multi Step Equations. Algebra Examples 3/8 – 1/4x = 1/2x – 3/4 3/8 – 1/4x = 1/2x – 3/4 8(3/8 – 1/4x) = 8(1/2x – 3/4) (Multiply both sides by 8) 8(3/8.
Solve a two-step equation by combining like terms EXAMPLE 2 Solve 7x – 4x = 21 7x – 4x = 21 Write original equation. 3x = 21 Combine like terms. Divide.
6-2 Solving Systems Using Substitution Hubarth Algebra.
Solving Linear Systems Using Substitution There are two methods of solving a system of equations algebraically: Elimination Substitution - usually used.
Substitution Method: Solve the linear system. Y = 3x + 2 Equation 1 x + 2y=11 Equation 2.
Rewrite a linear equation
Solve the equation. 1. 6a – 3 + 2a = 13 ANSWER a = 2
EXAMPLE 2 Rationalize denominators of fractions Simplify
Solving Multi-Step Equations
Solve a literal equation
Solve an equation by multiplying by a reciprocal
Solve a quadratic equation
6-2 Solving Systems Using Substitution
Example 2 4 m 8 m 5m 12 m x y.
Solving Multi-Step Equations
Solving Multi-Step Equations
Solve an equation by combining like terms
EXAMPLE 4 Standardized Test Practice SOLUTION
Solving Multi-Step Equations
Solving Multi-Step Equations
Simplifying Algebraic Expressions
Objective The student will be able to:
Solving Multi-Step Equations
Solve Linear Systems by Substitution
Solve an inequality using subtraction
Solving Multi-Step Equations
Example 2B: Solving Linear Systems by Elimination
The student will be able to:
EXAMPLE 4 Solve proportions Solve the proportion. ALGEBRA a x 16
Presentation transcript:

Do Now: Pass out calculators. Pick up an Algebra I sheet from the back – work on Mac & Tolley’s Road Trip problem.

Objective: To solve a system of equations using substitution.

Use the substitution method EXAMPLE 1 Use the substitution method Solve the linear system: y = 3x + 2 Equation 1 x + 2y = 11 Equation 2 SOLUTION STEP 1 Solve for y. Equation 1 is already solved for y.

Use the substitution method EXAMPLE 1 Use the substitution method STEP 2 Substitute 3x + 2 for y in Equation 2 and solve for x. x + 2y = 11 Write Equation 2. x + 2(3x + 2) = 11 Substitute 3x + 2 for y. 7x + 4 = 11 Simplify. 7x = 7 Subtract 4 from each side. x = 1 Divide each side by 7.

EXAMPLE 1 Use the substitution method STEP 3 Substitute 1 for x in the original Equation 1 to find the value of y. y = 3x + 2 = 3(1) + 2 = 3 + 2 = 5 ANSWER The solution is (1, 5).

Use the substitution method EXAMPLE 1 GUIDED PRACTICE Use the substitution method CHECK Substitute 1 for x and 5 for y in each of the original equations. y = 3x + 2 x + 2y = 11 5 = 3(1) + 2 ? 1 + 2 (5) = 11 ? 5 = 5 11 = 11

Use the substitution method EXAMPLE 2 Use the substitution method Solve the linear system: x – 2y = –6 Equation 1 4x + 6y = 4 Equation 2 SOLUTION STEP 1 Solve Equation 1 for x. x – 2y = –6 Write original Equation 1. x = 2y – 6 Revised Equation 1

Use the substitution method EXAMPLE 2 Use the substitution method STEP 2 Substitute 2y – 6 for x in Equation 2 and solve for y. 4x + 6y = 4 Write Equation 2. 4(2y – 6) + 6y = 4 Substitute 2y – 6 for x. 8y – 24 + 6y = 4 Distributive property 14y – 24 = 4 Simplify. 14y = 28 Add 24 to each side. y = 2 Divide each side by 14.

Use the substitution method EXAMPLE 2 Use the substitution method STEP 3 Substitute 2 for y in the revised Equation 1 to find the value of x. x = 2y – 6 Revised Equation 1 x = 2(2) – 6 Substitute 2 for y. x = –2 Simplify. ANSWER The solution is (–2, 2).

Use the substitution method EXAMPLE 2 GUIDED PRACTICE Use the substitution method CHECK Substitute –2 for x and 2 for y in each of the original equations. Equation 1 Equation 2 4x + 6y = 4 x – 2y = –6 –2 – 2(2) = –6 ? 4(–2) + 6 (2) = 4 ? –6 = –6 4 = 4

EXAMPLE 1 GUIDED PRACTICE Use the substitution method for Examples 1 and 2 Solve the linear system using the substitution method. y = 2x + 5 1. 3x + y = 10 ANSWER (1, 7)

EXAMPLE 2 GUIDED PRACTICE Use the substitution method for Examples 1 and 2 Solve the linear system using the substitution method. x – y = 3 2. x + 2y = –6 ANSWER (0, –3)

EXAMPLE 2 GUIDED PRACTICE Use the substitution method for Examples 1 and 2 Solve the linear system using the substitution method. 3x + y = –7 3. –2x + 4y = 0 ANSWER (–2, –1)

EXAMPLE 3 Solve a multi-step problem WEBSITES Many businesses pay website hosting companies to store and maintain the computer files that make up their websites. Internet service providers also offer website hosting. The costs for website hosting offered by a website hosting company and an Internet service provider are shown in the table. Find the number of months after which the total cost for website hosting will be the same for both companies.

EXAMPLE 3 Solve a multi-step problem SOLUTION STEP 1 Write a system of equations. Let y be the total cost after x months. Equation 1: Internet service provider y = 10 + 21.95 x

Solve a multi-step problem EXAMPLE 3 Solve a multi-step problem Equation 2: Website hosting company y = 22.45 x The system of equations is: y = 10 + 21.95x Equation 1 y = 22.45x Equation 2

Solve a multi-step problem EXAMPLE 3 Solve a multi-step problem STEP 2 Substitute 22.45x for y in Equation 1 and solve for x. y = 10 + 21.95x Write Equation 1. 22.45x = 10 + 21.95x Substitute 22.45x for y. 0.5x = 10 Subtract 21.95x from each side. x = 20 Divide each side by 0.5. The total cost will be the same for both companies after 20 months. ANSWER