Immune system overview in 10 minutes The non-immunologist guide to the immune system.

Slides:



Advertisements
Similar presentations
Artificial Neural Networks 1 Morten Nielsen Department of Systems Biology, DTU.
Advertisements

Artificial Neural Networks 1 Morten Nielsen Department of Systems Biology, DTU IIB-INTECH, UNSAM, Argentina.
CENTER FOR BIOLOGICAL SEQUENCE ANALYSISTECHNICAL UNIVERSITY OF DENMARK DTU T cell Epitope predictions using bioinformatics (Hidden Markov models) Morten.
Immune system overview in 10 minutes The non-immunologist guide to the immune system Morten Nielsen Department of Systems Biology DTU.
CENTER FOR BIOLOGICAL SEQUENCE ANALYSISTECHNICAL UNIVERSITY OF DENMARK DTU Sequence motifs, information content, logos, and HMM’s Morten Nielsen, CBS,
CENTER FOR BIOLOGICAL SEQUENCE ANALYSISTECHNICAL UNIVERSITY OF DENMARK DTU T cell Epitope predictions using bioinformatics (Neural Networks and hidden.
Bioinformatical design of a vaccine against influenza virus N1 subtype Bonaccorsi, Irene; Clausen, Martin Bau; Høj, Leif Howalt; Kjær, Jesper and Sayyad,
HeleneAndersenMayaBondeAndersenSimonCarlsen MortenAhlgreenGronemann&MadsChristianHjortsø Figure 4, Alignment of the NS3 protein: Alignment of NS3 performed.
Sequence motifs, information content, logos, and Weight matrices
Prediction of T cell epitopes using artificial neural networks
MHC binding and MHC polymorphism Or Finding the needle in the haystack.
MHC binding and MHC polymorphism. MHC-I molecules present peptides on the surface of most cells.
Morten Nielsen, CBS, BioCentrum, DTU
Sequence motifs, information content, logos, and HMM’s Morten Nielsen, CBS, BioCentrum, DTU.
Immunological Bioinformatics Or Finding the needle in the haystack Morten Nielsen
CENTER FOR BIOLOGICAL SEQUENCE ANALYSISTECHNICAL UNIVERSITY OF DENMARK DTU T cell Epitope predictions using bioinformatics (Neural Networks and hidden.
Sequence motifs, information content, and sequence logos Morten Nielsen, CBS, Depart of Systems Biology, DTU.
CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Department of Systems Biology Technical University of Denmark Immunological Bioinformatics Introduction to the.
Hidden Markov Models, HMM’s Morten Nielsen, CBS, Department of Systems Biology, DTU.
MHC Polymorphism Ole Lund. Objectives What is HLA polymorphism? What is it good for? How does it make life difficult for vaccine design? Definition of.
Sequence motifs, information content, logos, and Weight matrices Morten Nielsen, CBS, BioCentrum, DTU.
Characterizing receptor ligand interactions Morten Nielsen, CBS, Depart of Systems Biology, DTU.
Artificial Neural Networks 1 Morten Nielsen Department of Systems Biology, DTU.
MHC Polymorphism. MHC Class I pathway Figure by Eric A.J. Reits.
Sequence motifs, information content, logos, and HMM’s Morten Nielsen, CBS, BioCentrum, DTU.
Class I pathway Prediction of proteasomal cleavage and TAP binidng Morten Nielsen, CBS, BioCentrum, DTU.
Immunological Bioinformatics: Prediction of epitopes in pathogens Ole Lund.
Immunological Bioinformatics Introduction to the immune system.
Immunological Bioinformatics. The Immunological Bioinformatics group Immunological Bioinformatics group, CBS, Technical University of Denmark (
CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Technical University of Denmark - DTU Department of systems biology Biopeople Tutorial 2011 Immunological Bioinformatics.
Selection of T Cell Epitopes Using an Integrative Approach Mette Voldby Larsen cand. scient. in biology ph.d. student.
Sequence motifs, information content, logos, and HMM’s Morten Nielsen, CBS, BioSys, DTU.
Immunological Bioinformatics Ole Lund. Challenges of the immune system Time Creation of self Creation of an immune system/ Tolerance to self Infection.
Psi-Blast Morten Nielsen, CBS, Department of Systems Biology, DTU.
Immunological databases on the web Ole Lund Center for Biological Sequence Analysis BioCentrum-DTU Technical University of Denmark
Sequence motifs, information content, logos, and HMM’s Morten Nielsen, CBS, BioCentrum, DTU.
Hidden Markov Models, HMM’s Morten Nielsen, CBS, BioSys, DTU.
Epitope Selection Rational Vaccine design. Why? Therapeutic vaccines Therapeutic vaccines Treatment of viral infections (e.g., HIV, HCV), and resistant.
Sequence motifs, information content, logos, and HMM’s Morten Nielsen, CBS, BioSys, DTU.
Prediction of CTL responses Mette Voldby Larsen cand. scient. in biology ph.d. student.
Immunological Bioinformatics Ole Lund Center for Biological Sequence Analysis BioCentrum-DTU Technical University of Denmark
HIV Vaccine London 2 nd August SEEK is a drug-discovery group that uses a pioneering scientific and commercially-driven approach to create breakthrough.
Vaccines Polio - close to eradication. In 2001 >1000 cases worldwide; last wild case in Americas in Peru in 1991.
Methods MHC class-I T cell epitope prediction for Nef Consensus and ancestral sequences of the Nef protein for the different HIV-1 subtypes were obtained.
Selection of T Cell Epitopes Using an Integrative Approach Mette Voldby Larsen cand. scient. in Biology PhD in Immunological Bioinformatics.
Hidden Markov Models, HMM’s Morten Nielsen, CBS, BioSys, DTU.
Ad5 expressing Gag, Pol and Nef Immune responses in control of HIV replication non-human primates // SIV extrapolated to humans // HIV Prospects for.
Artificial Neural Networks 1 Morten Nielsen Department of Systems Biology, DTU.
Hidden Markov Models, HMM’s
Weight matrices, Sequence motifs, information content, and sequence logos Morten Nielsen, CBS, Department of Systems Biology, DTU and Instituto de Investigaciones.
COMPILLATED BY CHANIF MAHDI
Virology - study of viruses
Prediction of T cell epitopes using artificial neural networks Morten Nielsen, CBS, BioCentrum, DTU.
Lecture 13 Immunology and disease: parasite antigenic diversity.
Viruses Characteristics, Structures, Types, and Replication.
Prediction of T cell epitopes using artificial neural networks Morten Nielsen, CBS, BioCentrum, DTU.
Learning Target: Identify the functions of the immune system
Immune System.
Immunological Bioinformatics
Immunology and disease: parasite antigenic diversity
Pgs Functions of the Immune System
Motifs, logos, and Profile HMM’s
Ligand Docking to MHC Class I Molecules
Experimental methods in classic epitope discovery
Sequence motifs, information content, and sequence logos
Immunological Bioinformatics
Sequence motifs, information content, logos, and HMM’s
Sequence motifs, information content, and sequence logos
Friday April 5, 2019 Agenda: Immune system notes You will need: Body systems workbook, pencil, highlighter To Do: Pg. 37—Finish questions from yesterday’s.
Presentation transcript:

Immune system overview in 10 minutes The non-immunologist guide to the immune system

Vaccine development! The arm of Sarah Nelmes, a dairy maid, who had contracted cowpox. Jenner used material from her arm to vaccinate an eight year old boy, James Phipps. (1798).

Vaccine review

Vaccines can eradicate pathogens and save lives

Vaccines have been made for 36 of >400 human pathogens Immunological Bioinformatics, The MIT press. +HPV & Rotavirus

MHC Class I pathway Figure by Eric A.J. Reits

MHC-I molecules present peptides on the surface of most cells Figure courtesy Mette Voldby Larsen

CTL response Figure courtesy Mette Voldby Larsen

Encounter with death

Figure by Anne Mølgaard

HLA binding motif SLLPAIVEL YLLPAIVHI TLWVDPYEV GLVPFLVSV KLLEPVLLL LLDVPTAAV LLDVPTAAV LLDVPTAAV LLDVPTAAV VLFRGGPRG MVDGTLLLL YMNGTMSQV MLLSVPLLL SLLGLLVEV ALLPPINIL TLIKIQHTL HLIDYLVTS ILAPPVVKL ALFPQLVIL GILGFVFTL STNRQSGRQ GLDVLTAKV RILGAVAKV QVCERIPTI ILFGHENRV ILMEHIHKL ILDQKINEV SLAGGIIGV LLIENVASL FLLWATAEA SLPDFGISY KKREEAPSL LERPGGNEI ALSNLEVKL ALNELLQHV DLERKVESL FLGENISNF ALSDHHIYL GLSEFTEYL STAPPAHGV PLDGEYFTL GVLVGVALI RTLDKVLEV HLSTAFARV RLDSYVRSL YMNGTMSQV GILGFVFTL ILKEPVHGV ILGFVFTLT LLFGYPVYV GLSPTVWLS WLSLLVPFV FLPSDFFPS CLGGLLTMV FIAGNSAYE KLGEFYNQM KLVALGINA DLMGYIPLV RLVTLKDIV MLLAVLYCL AAGIGILTV YLEPGPVTA LLDGTATLR ITDQVPFSV KTWGQYWQV TITDQVPFS AFHHVAREL YLNKIQNSL MMRKLAILS AIMDKNIIL IMDKNIILK SMVGNWAKV SLLAPGAKQ KIFGSLAFL ELVSEFSRM KLTPLCVTL VLYRYGSFS YIGEVLVSV CINGVCWTV VMNILLQYV ILTVILGVL KVLEYVIKV FLWGPRALV GLSRYVARL FLLTRILTI HLGNVKYLV GIAGGLALL GLQDCTMLV TGAPVTYST VIYQYMDDL VLPDVFIRC VLPDVFIRC AVGIGIAVV LVVLGLLAV ALGLGLLPV GIGIGVLAA GAGIGVAVL IAGIGILAI LIVIGILIL LAGIGLIAA VDGIGILTI GAGIGVLTA AAGIGIIQI QAGIGILLA KARDPHSGH KACDPHSGH ACDPHSGHF SLYNTVATL RGPGRAFVT NLVPMVATV GLHCYEQLV PLKQHFQIV AVFDRKSDA LLDFVRFMG VLVKSPNHV GLAPPQHLI LLGRNSFEV PLTFGWCYK VLEWRFDSR TLNAWVKVV GLCTLVAML FIDSYICQV IISAVVGIL VMAGVGSPY LLWTLVVLL SVRDRLARL LLMDCSGSI CLTSTVQLV VLHDDLLEA LMWITQCFL SLLMWITQC QLSLLMWIT LLGATCMFV RLTRFLSRV YMDGTMSQV FLTPKKLQC ISNDVCAQV VKTDGNPPE SVYDFFVWL FLYGALLLA VLFSSDFRI LMWAKIGPV SLLLELEEV SLSRFSWGA YTAFTIPSI RLMKQDFSV RLPRIFCSC FLWGPRAYA RLLQETELV SLFEGIDFY SLDQSVVEL RLNMFTPYI NMFTPYIGV LMIIPLINV TLFIGSHVV SLVIVTTFV VLQWASLAV ILAKFLHWL STAPPHVNV LLLLTVLTV VVLGVVFGI ILHNGAYSL MIMVKCWMI MLGTHTMEV MLGTHTMEV SLADTNSLA LLWAARPRL GVALQTMKQ GLYDGMEHL KMVELVHFL YLQLVFGIE MLMAQEALA LMAQEALAF VYDGREHTV YLSGANLNL RMFPNAPYL EAAGIGILT TLDSQVMSL STPPPGTRV KVAELVHFL IMIGVLVGV ALCRWGLLL LLFAGVQCQ VLLCESTAV YLSTAFARV YLLEMLWRL SLDDYNHLV RTLDKVLEV GLPVEYLQV KLIANNTRV FIYAGSLSA KLVANNTRL FLDEFMEGV ALQPGTALL VLDGLDVLL SLYSFPEPE ALYVDSLFF SLLQHLIGL ELTLGEFLK MINAYLDKL AAGIGILTV FLPSDFFPS SVRDRLARL SLREWLLRI LLSAWILTA AAGIGILTV AVPDEIPPL FAYDGKDYI AAGIGILTV FLPSDFFPS AAGIGILTV FLPSDFFPS AAGIGILTV FLWGPRALV ETVSEQSNV ITLWQRPLV

HLA binding specificity High information positions If we have binding data, can we accurate describe the binding specificity!

HLA specificity clustering A0201 A0101 A6802 B0702

HLA polymorphism

More MHC molecules: more diversity in the presented peptides 1% probability that MHC molecule presents a peptide Different hosts sample different peptides from same pathogen.

Pathogen variability –Millions of viral particles within a given host Pathogen diversity –Different viral subtypes circulating in different parts of the world

HIV subtypes (Gag protein) C B AE A D

Epitope identification 56 (1.5%) 9mer are conserved among all 15 Clade A gag sequences

Viral escape Figure courtesy Mette Voldby Larsen ??? ?? ???? The virus of today is different from the virus of tomorrow (Viral escape)

Vaccine design. Polytope construction NH2 COOH Epitope Linker M C-terminal cleavage Cleavage within epitopes New epitopes cleavage

DNA vaccine