Fits and Tolerances Lecture 20 Autumn Quarter.

Slides:



Advertisements
Similar presentations
1 Copyright © 2013 Elsevier Inc. All rights reserved. Chapter 38.
Advertisements

By D. Fisher Geometric Transformations. Reflection, Rotation, or Translation 1.
Chapter 1 Image Slides Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
DIVIDING INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
Addition Facts
ZMQS ZMQS
DIMENSIONING AND TOLERANCING
Addition 1’s to 20.
25 seconds left…...
Week 1.
Chapter 16 Tolerancing.
FITS and TOLERANCES.
Tolerancing II Engr 135.
Lecture 2 – Clearance Fits
Fits and Tolerances.
Tolerances.
10 Tolerancing. 10 Tolerancing Define terms related to tolerancing. Explain how tolerances are expressed on a drawing. Identify tolerance values for.
Precision Dimensioning
Tolerances Cylindrical Fits & Geometric Tolerances
Engineering Graphics Stephen W. Crown Ph.D.
MECHANICAL DRAWING Chapter 10: TOLERANCES AND FITS
CSWA
Tolerance Dimensioning
Glossary of Terms.
ADVANCED MECHANICAL DRAFTING
Tolerance: Controlling of Variability
Fits and Tolerances *TWO PART LECTURE
Dimensioning Review Objectives:.
Ch.9 Tolerancing Objective: Learn how to present tolerance, types of tolerance presentation, fit types and terminology Why tolerance is so important in.
Tolerancing READING! - Today Lamit - Chapter 13 NEXT WEEK!
Tolerancing Chapter Technical Drawing 13 th Edition Giesecke, Mitchell, Spencer, Hill Dygdon, Novak, Lockhart © 2009 Pearson Education, Upper Saddle.
ANADOLU U N I V E R S I T Y ENM202 Industrial Engineering Department
TECH 104 – Technical Graphics Communication
General Tolerance and Hole Fit
Fits & Tolerances.
Registered Electrical & Mechanical Engineer
CGT 110 – Technical Graphics Communication
Ken YoussefiMechanical & Aerospace Engineering Dept., SJSU 1 Dimensioning & Tolerancing.
Tolerancing Chapter 11.
Printing Instructions:
1 Introduction to Engineering Tolerancing – 1: Control of Variability & Reading Construction and Working Drawings Goals Understand the description and.
Dimensioning and Tolerancing
Tolerances. EML 2023 Computer Aided Design Introduction tolerancing –technique of dimensioning parts within a required range of variation to ensure interchangeability.
Introduction to Engineering Tolerancing - 2 Agenda Determining limits Use standard tables for tolerancing and control fit.
Ahmed M. El-Sherbeeny, PhD Industrial Engineering Department
Mechanical Drawing (MDP 115)
Tolerance Dimensioning
Dimensioning Lecture 16 Instructor:
Engineering H191 - Drafting / CAD Gateway Engineering Education Coalition Lect 21P. 1Autumn Quarter Review of Fits and Tolerances AutoCAD 3D Multiview.
Handout 10a1 TOLERANCES - Introduction Nearly impossible to make the part to the exact dimension by any means of manufacturing approach  tolerances of.
C H A P T E R E L E V E N TOLERANCING. 2 Technical Drawing with Engineering Graphics, 14/e Giesecke, Hill, Spencer, Dygdon, Novak, Lockhart, Goodman ©
Review of Fits and Tolerances AutoCAD 3D Multiview
Tolerances Introduction to Engineering Design
Tolerancing Chapter 11.
Section 4 Advanced Applications
CHAPTER ONE : Fits and Tolerances
Precision Dimensioning
Tolerances Introduction to Engineering Design
Tolerances.
Tolerances Introduction to Engineering Design
Instructor: James Thornburgh
Engineering H191 Engineering Fundamentals and Laboratory I
Precision Dimensioning
Tolerances Introduction to Engineering Design
Tolerances Flóra Hajdu B406
Fits & Tolerances.
LIMITS FITS AND TOLERANCES
Embodiment Design: Dimensions and Tolerances
Tolerances.
Fits and allowances Flóra Hajdu B406
Presentation transcript:

Fits and Tolerances Lecture 20 Autumn Quarter

Tolerancing – Control of Variability Goals Understand the description and control of variability through tolerancing. Use standard tables for tolerancing and control of fit Reference (BTG) P. 312-317 – Dimensioning for Interchangeable Parts P. 349-354 – Standard Tables for Fits P. 358-369 – Geometric Tolerancing Instructor: Some students have problems with tolerances and it is worth taking this lesson slowly and making sure that all of the students are with you. If you are not using the Boyer Technical Graphics book, you will need to find these sections in your text book. Autumn Quarter

Definition of Tolerance Tolerance is the total amount a dimension may vary. It is the difference between the maximum and minimum limits. There is no such thing as an "exact size". Tolerance is key to interchangeable parts. Instructor: Emphasize that we are working on getting the maximum and minimum sizes for a particular part first. Then we will worry about parts fitting together. Also remind them that the closer you hold a tolerance the higher the cost of an item. Autumn Quarter

Ways to Express Tolerance Direct limits or as tolerance limits applied to a dimension Geometric tolerances Notes referring to specific conditions A general tolerance note in title block Instructor: There are a variety of ways to specify part sizes. This set of notes is going to use upper and lower limits most of the time. Just as a drawing must have the scale listed in the title block it must also have the overall tolerance of parts and part features. Typically it might be something like: All parts are +/-.01 unless otherwise specified. Autumn Quarter

Direct Limits and Tolerance Values Can be: Limits: Upper limit – 3.53 Lower limit – 3.49 Unilateral – vary in only one direction 3.49 0 -.0X +.0X - 0 Bilateral – vary larger or smaller (may or may not be same amount) 3.50 +.05 -.01, +.10 -.20 +/- 0.05 +.04 Instructor: Here are some of the ways to specify the limits on parts. +.03 -.01 Autumn Quarter

Geometric Tolerance System Geometric dimensioning and tolerancing (GDT) is a method of defining parts based on how they function, using standard ANSI symbols. (More about this in a couple of weeks.) Feature Control Frame Concentricity Symbol Instructor: There is large body of knowledge that deals with Geometric Dimensioning and Tolerancing. We are introducing it here so that the students have an idea of what to look for in drawings that have GDT. The A in the sign is the base dimension – in this case the diameter. The rectangular box specifies that the cylinder on the right end must be concentric with the cylinder labeled A within 0.01 inch Autumn Quarter

Notes and Title Block ALL DECIMAL DIMENSIONS THAT ARE THREE PLACE ACCUARCY (.XXX) TO BE HELD TO +/-.005" Instructor: Point out to your students that the overall tolerance on this drawing depends on the number of decimal places in the given dimension. Note that they specify the tolerance on angles (+/- 1 degree) as well as the other dimensions. In this case, there is also an overall surface finish specified – the symbol that looks like a check mark. Autumn Quarter

Important Terms – Single Part Nominal Size – a general size, usually expressed as a common fraction (1/2”) Basic Size – theoretical size used as starting point (.500”) Actual Size – measured size (.501”) Limits – maximum and minimum sizes shown by tolerances Tolerance – total allowable variance in dimensions (upper limit – lower limit) Instructor: Take your time going through this slide. Make sure that they understand each definition. Autumn Quarter

Important Terms – Multiple Parts Allowance – the minimum clearance or maximum interference between parts Fit – degree of tightness between two parts Clearance Fit – tolerance of mating parts always leave a space Interference Fit – tolerance of mating parts always interfere Transition Fit – sometimes interfere, sometimes clear Tolerance – total allowable variance in dimensions (upper limit – lower limit) Instructor: Note that the definitions on the previous page dealt with one part and how it varies. On this page the definitions deal with how parts fit together. Autumn Quarter

Fitting Two Parts Part A Tolerance of A Part B Tolerance of B Tolerance: Clearance or Interference Instructor: The blue area represents the fit between A and B where the dark area represent the variance in the size of A and B Autumn Quarter

Shaft and Hole Fits Clearance Interference Instructor: Here is another way to look at how parts fit together. In this illustration, the beige area represents the variation in size of one part and it is easy to see that on the left side we have a clearance fit where the smallest hole is larger than the largest shaft. This is called a clearance fit. The opposite is true on the other end. This is a force fit, shrink fit or an interference fit. Note the small print at the bottom: Allowance always equals the smallest hole minus the largest shaft. When you have an interference fit the allowance is negative. Autumn Quarter

Shaft and Hole Fits Transition CLEARANCE FIT + .003 Instructor: This figure is slightly different than the previous one. Here they have put the smallest shaft on the left end and the largest shaft on the right side. The shaft on the left clears by .003 inch while the one on the right interferes by .002 inch. Autumn Quarter

Standard Precision Fits: English Units Running and sliding fits (RC) Clearance locational fits (LC) Transition locational fits (LT) Interference locational fits (LN) Force and shrink fits (FN) See Tables in the Appendix (pp. A11-A23) Instructor: Here are the types of fits specified by ANSI. The tables are found in the Appendices in most graphics books. Autumn Quarter

Basic Hole System or Hole Basis Definition of the "Basic Hole System": The "minimum size" of the hole is equal to the "basic size" of the fit Example: If the nominal size of a fit is 1/2", then the minimum size of the hole in the system will be 0.500" Instructor: There needs to be some order to doing tolerances and in this case the choice was to make the smallest hole the basic size. If the nominal size is given as a common fraction (1/2) then the basic size is .500 or .5000 depending on the type of fit. Autumn Quarter

Fit Calculations Clearance = Hole – Shaft Cmax = Hmax – Smin Cmin = Hmin – Smax Both Cmax and Cmin >0 – Clearance fit Both Cmax and Cmin <0 – Interference fit Cmax > 0, Cmin < 0 – Transition fit Allowance = Hmin - Smax (i.e., Cmin) Instructor: Go through this table of equations with your class. These are the equations that they will use to complete today’s exercises. Autumn Quarter

Fit Calculations System Tolerance = Cmax - Cmin (Sometimes called Clearance Tolerance) Also, System Tolerance = Σ Ti So, System Tolerance, or Ts , can be written as: Ts = Cmax - Cmin = Σ Ti Thus, you always have a check value Instructor: Here are the equations to check your work by looking at the system tolerance – the sum of the tolerances of the parts. Autumn Quarter

Example Instructor: Here is an example of looking at the tolerance of each part and the fit tolerance. Autumn Quarter

Metric Limits and Fits Based on Standard Basic Sizes – ISO Standard, see the Appendix material (Appendices 8 - 12) Note that in the Metric system: Nominal Size = Basic Size Example: If the nominal size is 8, then the basic size is 8 Instructor: In the metric system the nominal size is equal to the basic size given with the correct number of decimal places. Autumn Quarter

Metric Preferred Hole Basis System of Fits Instructor: When working in the metric system they use a series of letters and numbers where the capital letters represent the hole and the lower case letters represent the shaft sizes. Autumn Quarter

Metric Tolerance Homework – Example TOL-1B Instructor: Here is an example done in the metric system. Autumn Quarter

Good Review Material BTG Chapter 7 Dimensions and Tolerances Pages 290-335 BTG Chapter 8 Dimensions For Production Pages 340-375 Instructor: Make sure the students are reading the text book. You might want to put your text under the document camera (if you use one) to show them figures from the chapter and to show them examples from the Appendices. Autumn Quarter

Assignments Dwg 39 – G27 – Tolerances – Single Fits Calculate the missing values for each situation. Use the tables for preferred limits and fits for cylindrical parts. Dwg 40 – TOL–1A – Metric Tolerances Using the given nominal sizes and fit specifications, calculate remaining values. Instructor: If you do not use a document camera make a copy of one of the pages from the Appendix at a large enough scale to be easily read when projected and show them how the table works. Autumn Quarter