Chapter 20: Basic principles of intersection signalization

Slides:



Advertisements
Similar presentations
Part 3 Probabilistic Decision Models
Advertisements

Chapter 1 The Study of Body Function Image PowerPoint
UNITED NATIONS Shipment Details Report – January 2006.
Summary of Convergence Tests for Series and Solved Problems
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
Year 6 mental test 10 second questions
ANALYZING AND ADJUSTING COMPARABLE SALES Chapter 9.
Solve Multi-step Equations
ABC Technology Project
Capacity Planning For Products and Services
1 Undirected Breadth First Search F A BCG DE H 2 F A BCG DE H Queue: A get Undiscovered Fringe Finished Active 0 distance from A visit(A)
Green Eggs and Ham.
VOORBLAD.
1 Breadth First Search s s Undiscovered Discovered Finished Queue: s Top of queue 2 1 Shortest path from s.
Factor P 16 8(8-5ab) 4(d² + 4) 3rs(2r – s) 15cd(1 + 2cd) 8(4a² + 3b²)
© 2012 National Heart Foundation of Australia. Slide 2.
Understanding Generalist Practice, 5e, Kirst-Ashman/Hull
Elasticity of Demand and Supply
Model and Relationships 6 M 1 M M M M M M M M M M M M M M M M
25 seconds left…...
Januar MDMDFSSMDMDFSSS
Analyzing Genes and Genomes
We will resume in: 25 Minutes.
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
Chapter 15: Quantitatve Methods in Health Care Management Yasar A. Ozcan 1 Chapter 15. Simulation.
Intracellular Compartments and Transport
PSSA Preparation.
Immunobiology: The Immune System in Health & Disease Sixth Edition
Essential Cell Biology
Commonly Used Distributions
INTRODUCTION TO TRANSPORT Lecture 7 Introduction to Transport Lecture 7: Signal Coordination.
Lec 16, Ch16, pp : Intersection delay (Objectives)
Transportation Engineering
INTRODUCTION TO TRANSPORT Lecture 3 Introduction to Transport Lecture 4: Traffic Signal.
Chapter 221 Chapter 22: Fundamentals of Signal Timing: Actuated Signals Explain terms related to actuated signals Explain why and where actuated signals.
1Chapter 9-4e Chapter 9. Volume Studies & Characteristics Understand that measured volumes may not be true demands if not careful in data collection and.
REVISION. Sample Question The sample questions for this year. Describe briefly the classic transport model, explaining the four stages of the model. [10]
INTRODUCTION TO TRANSPORT Lecture 4 Introduction to Transport Lecture 4: Signal Timing.
CTC-340 Signals - Basics. Terms & Definitions (review) Cycle - Cycle Length - Interval -. change interval - clearance interval- change + clearance = Yi.
Basic Principles of Intersection Signalisation
Lecture #6 Chapter 16: Principles of Intersection Signalization.
Lec 24, Ch.19: Actuated signals and detectors (Objectives) Learn terminology related to actuated signals Understand why and where actuated signals are.
Unsignalized Intersections CTC-340. Hmwk At end of powerpoint.
Lec 15, Ch.8, pp : Signal Timing (Objective)
Introduction to Transport
Signals. Laneage Coding Examples.
Lecture #7 Chapter 16: Principles of Intersection Signalization (cont.)
Highway Capacity Software Based on the Highway Capacity Manual (HCM) Special Report 209 Transportation Research Board (TRB), National Research Council.
Lec 20, Ch.18, pp : Analysis of signalized intersections, HCM (Objectives) Understand the conceptual framework for the HCM 2000 method Understand.
Chapter 17: Basic principles of intersection signalization (objectives) Chapter objectives: By the end of this chapter the student will be able to: Explain.
Lec 22, Ch.18, pp : Capacity & LOS (Objectives) Understand how critical lane groups and the sum of critical lane v/s rations are determined Learn.
CEE – Spring 2005 Lectures 10 to 11 (Chapters 21, 22) Analysis of Signalized Intersections.
Signalized Intersections
Transportation Engineering
Transportation Engineering
Transportation Engineering
CEE 320 Fall 2008 Course Logistics HW7 due today (9 total) Midterm next Friday (Wednesday review) Signalized Intersections (Chapter 7 of text) Last material.
Chapter 20: Actuated Signal Control and Detection
Introduction to Transport
Traffic Signal Timing Design Part I. Slide 2 Steps in Designing a Traffic Signal Timing Plan (1/2) 1. Determine lane configurations and lane volumes 2.
Problem 4: Clifton Country Rd/Route 146 Intersection Base Case Phasing and Volumes Analysis Plans Description of Analyses Overarching Issues 4a: AM peak.
INTERSECTION MODEL COMPONENTS TTE 6815 K. Courage.
Signal timing CTC-340. Key Elements Development of safe and effective phase plan and sequence Determination of vehicle signal needs –Timing of yellow.
Signalized Intersections
Highway capacity and Level of Service Analysis
Presentation transcript:

Chapter 20: Basic principles of intersection signalization Chapter objectives: By the end of this chapter the student will be able to: Explain the meanings of the terms related to signalized intersections Explain the relationship among discharge headway, saturation flow, lost times, and capacity Explain the “critical lane” and “time budget” concepts Model left-turn vehicles in signal timing State the definitions of various delays taking place at signalized intersections Graph the relation between delay, waiting time, and queue length Explain three delay scenarios (uniform) Explain the components of Webster’s delay model and use it to estimate delay Explain the concept behind the modeling of random and overflow delay Know inconsistencies existing between stochastic and overflow delay models Chapter 20

Discharge headways, saturation flow rates, and lost times Four critical aspects of signalized intersection operation discussed in this chapter Discharge headways, saturation flow rates, and lost times Allocation of time and the critical lane concept The concept of left-turn equivalency Delay as a measure of service quality Chapter 20

20.1.1 Components of a Signal Cycle Cycle length Phase Interval Change interval All-red interval (clearance interval) Controller Chapter 20

Signal timing with a pedestrian signal: Example Interval Pine St. Oak St. % Veh. Ped. 1 G-26 W-20 R-31 DW-31 36.4 2 FDW-6 10.9 3 Y-3.5 DW-29 6.4 4 R-25.5 AR 2.7 5 G-19 W-8 14.5 6 FDW-11 20.0 7 Y-3 DW-5 5.5 8 R-2 AR 3.6 Cycle length = 55 seconds Chapter 20

20. 1. 2 Signal operation modes and left-turn treatments & 20. 1 20.1.2 Signal operation modes and left-turn treatments & 20.1.3 Left-turn treatments Operation modes: Pretimed (fixed) operation Semi-actuated operation Full-actuated operation Master controller, computer control, adaptive traffic control systems for coordinated systems Left-turn treatments: Permitted left turns Protected left turns Protected/permitted (compound) or permitted/protected left turns Chapter 20

Factors affecting the permitted LT movement LT flow rate Opposing flow rate Number of opposing lanes Whether LTs flow from an exclusive LT lane or from a shared lane Details of the signal timing Chapter 20

CFI (Continuous Flow Intersection) Bangerter Highway & 3500 South Chapter 20

DDI (Diverging Diamond Interchange) Chapter 20

Four basic mechanisms for building an analytic model or description of a signalized intersection Discharge headways at a signalized intersection The “critical lane” and “time budget” concepts The effects of LT vehicles Delay and other MOEs (like queue size and the number of stops) Chapter 20

20.2 Discharge headways, saturation flow, lost times, and capacity Start-up lost time Effective green h 1 2 3 4 5 6 7 Vehicles in queue Total lost time Saturation flow rate Clearance lost time e Startup lost time Extension of green Gi Capacity yi ari Cycle length Chapter 20

Sample problem, p. 467 First approach: Second approach: Eq. 20-6 Chapter 20

20.2.6 Saturation flow rates from a nationwide survey Chapter 20

20.3 The “critical lane” and “time budget” concepts Each phase has one and only one critical lane (the most intense traffic demand). If you have a 2-phase signal, then you have two critical lanes. 345 Total loss in one hour Total effective green in one hour 100 75 Max. sum of critical traffic demand; this is the total demand that the intersection can handle. 450 N = No. of phases; tL = Lost time in seconds per phase; C = Cycle length, sec; h = saturation headway, sec/veh Chapter 20

20.3.2 Finding an Appropriate Cycle Length Desirable cycle length, incorporating PHF and the desired level of v/c Eq. 20-13 Eq. 20-14 Doesn’t this look like the Webster model? The benefit of longer cycle length tapers around 90 to 100 seconds. This is one reason why shorter cycle lengths are better. N = # of phases. Larger N, more lost time, lower Vc. Chapter 20

Webster’s optimal cycle length model C0 = optimal cycle length for minimum delay, sec L = Total lost time per cycle, sec Sum (v/s)i = Sum of v/s ratios for critical lanes Delay is not so sensitive for a certain range of cycle length  This is the reason why we can round up the cycle length to, say, a multiple of 5 seconds. Chapter 20

20.3.2 Finding an Appropriate Cycle Length Desirable cycle length, Cdes Marginal gain in Vc decreases as the cycle length increases. Cycle length 100% increase Vc 8% increase (Review the sample problem on page 473) Fig. 20.4 Chapter 20

A sample problem, p.473 Chapter 20

20.4 The Concept of Left-Turn (and Right-Turn) Equivalency In the same amount of time, the left lane discharges 5 through vehicles and 2 left-turning vehicles, while the right lane discharges 11 through vehicles. Chapter 20

Left-turn vehicles are affected by opposing vehicles and number of opposing lanes. 5 1000 1500 The LT equivalent increases as the opposing flow increases. For any given opposing flow, however, the equivalent decreases as the number of opposing lanes is increased. Chapter 20

Left-turn consideration: 2 methods Given conditions: 2-lane approach Permitted LT 10% LT, TVE (ELT) =5 h = 2 sec for through Solution 1: Each LT consumes 5 times more effective green time. Solution 2: Calibrate a factor that would multiply the saturation flow rate for through vehicles to produce the actual saturation flow rate. Chapter 20

20.5 Delay as an MOE Common MOEs: Delay Queuing Stopped time delay: The time a vehicle is stopped while waiting to pass through the intersection Approach delay: Includes stopped time, time lost for acceleration and deceleration from/to a stop Travel time delay: the difference between the driver’s desired total time to traverse the intersection and the actual time required to traverse it. Time-in-queue delay: the total time from a vehicle joining an intersection queue to its discharge across the stop-line or curb-line. Control delay: time-in-queue delay + acceleration/deceleration delay) Common MOEs: Delay Queuing No. of stops (or percent stops) Chapter 20

20.5.2 Basic theoretical models of delay Uniform arrival rate assumed, v Here we assume queued vehicles are completely released during the green. Note that W(i) is approach delay in this model. At saturation flow rate, s The area of the triangle is the aggregate delay. Figure 20.10 Chapter 20

Three delay scenarios This is acceptable. This is great. UD = uniform delay OD = overflow delay due to prolonged demand > supply (Overall v/c > 1.0) OD = overflow delay due to randomness (“random delay”). Overall v/c < 1.0 A(t) = arrival function D(t) = discharge function If this is the case, we have to do something about this signal. Chapter 20

Arrival patterns compared Isolated intersections Signalized arterials HCM uses the Arrival Type factor to adjust the delay computed as an isolated intersection to reflect the platoon effect on delay. Chapter 20

Webster’s uniform delay model, p480 UDa Total approach delay The area of the triangle is the aggregated delay, “Uniform Delay (UD)”. To get average approach delay/vehicle, divide this by vC Chapter 20

Modeling for random delay, p.481 UD = uniform delay Analytical model for random delay Adjustment term for overestimation (between 5% and 15%) OD = overflow delay due to randomness (in reality “random delay”). Overall v/c < 1.0 D = 0.90[UD + RD] Chapter 20

Random delay derivation Chapter 20. Chapter 20

Modeling overflow delay because c = s (g/C), divide both sides by v and you get (g/C)(v/c) = (v/s). And v/c = 1.0. The aggregate overflow delay is: Because the total vehicle discharged during T is cT, See the right column of p.482 for the characteristics of this model. Chapter 20

Average overflow delay between T1 and T2 Average delay/vehicle = (Area of trapezoid)/(No. vehicles within T2-T1). Derive it by yourself. Hint: the denominator is c(T2-T1). Chapter 20

20.5.3 Inconsistencies in random and overflow delay The stochastic model’s overflow delay is asymptotic to v/c = 1.0 and the overflow model’s delay is 0 at v/c =1.0. The real overflow delay is somewhere between these two models. Chapter 20

Comparison of various overflow delay model 20.5.4 Delay model in the HCM 2000 The 4th edition dropped the HCM 2000 model (I don’t know why…). It looks like Akcelik’s model that you see in p. 484 (eq. 20-26). These models try to address delays for 0.85<v/c<1.15 cases. Chapter 20

20.5.5 Sample delay computations We will walk through sample problems (pages 484-485). This will review all delay models we studied in this chapter. Start reading Synchro 9.0 User Manual and SimTraffic 9.0 User Manual. We will use these software programs starting Mon, October 20, 2014. Chapter 20