Experimental methods for material measurements at high strain-rate Workshop on Materials for Collimators and Beam Absorbers Experimental methods for material measurements at high strain-rate Lorenzo Peroni, Massimiliano Avalle Dipartimento di Meccanica, Politecnico di Torino
Contents Introduction Material behaviors, characterization Experimental methods Mechanical testing equipment Conclusions
Dynamic effects on material behavior Stress-strain characteristic and the effect of strain-rate on the mechanical behaviour of a material r d Variation in yield strength Variation in failure strength (ultimate tensile strength) Variation in elongation at failure Different work-hardening behaviour s d r s E s s Quasi-static mechanical characteristic E Dynamic mechanical characteristic r s r d For many materials, strain-rate has negligible effect on the elastic modulus
Strain-rate effect: some experimental results PP, mechanical characteristics a f c d e b In questa slide sono presentati alcuni dei risultati ottenuti dalle prove di caratterizzazione dinamica a trazione di cinque materiali plastici differenti, ovvero del polipropilene, del Nylon non caricato, un elastomero, del polistirene e del policarbonato. Come è facile osservare dai grafici proposti tali materiali presentano una notevole sensibilità alla velocità di deformazione sia per quanto riguarda il limite elastico che per il modulo di Young. Inoltre è significativo sottolineare come al variare della velocità di deformazione della prova cambi la forma della caratteristica deformazione-tensione e anche le modalità di collasso del materiale. Infatti se bassa velocità tutti i polimeri analizzati presentano una grande duttilità, a velocità di deformazione medio-alte dell’ordine di 100 s-1 risultano notevolmente più fragili o addirittura come nel caso del propilene presentano un comportamento lineare elastico fino a rottura. Different classes of polymers tested: PP, PA6, TEEE, PS, PC, EVA…
Multiaxial behavior (plastics, foams…) As it is well known plastics and cellular materials yield is not independent on the hydrostatic component of stress shyd Von Mises shyd Therefore, the plastic collapse condition cannot be characterized from the result of a single (uniaxial) test, having a given ratio of hydrostatic/deviatoric stress components, but it is necessary to perform several tests with different combinations of deviatoric and hydrostatic stress components Tresca
Testing methods
Uniaxial tension test
Shear: torsion test Torsion loading test rig (shown with an aluminum foam sample mounted on it)
Shear: 4-point asymmetrical tests z txz x Used for the mechanical characterization of ceramics, and ceramics composites (CfC’s) according to ASTM C1469 standard Foamglas
Shear strength of joinings Offset single-lap *CFC/Cu/CuCrZr and W/Cu/CuCrZr joints for ITER Shear/compression Torsion Cu/CfC joint shear test Double-notch (ASTM C1292) SiC joined by: Silicon Glass
Hydrostatic tests sA = sR = p sA sR (= p) Test chamber Fluid p Axial rod sA = sR = p Fluid p sA Axial rod Radial rod sA sR (= p)
Hydrostatic and hydro-compression test Hydrostatic (compression)
Fatigue loading Stress-life and strain-life approach Rotating bending (metals), plane bending (polymers, composites) high-cycle fatigue Tension/compression low-cycle/high-cycle fatigue (evaluation of the hysteresis of the material)
Composites For orthotropic materials like most composites, tests at different loading angles are required to obtain the different moduli (in-plane E11, E22, G12) and Poisson’s coefficient (n12) For unbalanced layered composites, bending tests are also required Impact tests are also performed to measure dynamic properties energy absorption capability GFRP sample with rosette to measure strain in different directions
The Split Hopkinson Pressure Bar (SHPB) Operating principle The projectile hits the incident bar generating a compressive wave train The wave train propagates at the speed of sound in the bars material and reaches the specimen, then: It is partly reflected Partly crosses the specimen and goes through the transmission bar The reflected and transmitted waves are measured By reconstruction based on the two signal the dynamic mechanical characteristic is obtained Proiectile Transmission bar Incident bar Specimen
The Split Hopkinson Pressure Bar (SHPB) Split Hopkinson Pressure Bar (SHPB, compression test) Split Hopkinson Tensile Bar (SHTB, tensile test) Tensile specimen Steel sheet Compression specimen Bulk adhesive Bulk adhesive Aluminum foam
Determination of the stress-strain characteristic Time history measurement of: Average stress (specimen) Strain-rate (specimen) Strain (specimen) Signals synchronization Evaluation of the stress-strain characteristic
Dynamic tensile equipment: FasTENS To cover the speed range from 1 to 10 m/s, in tensile loading, in between the hydraulic systems and the SHPB, a special fast tensile equipment, pneumatically actuated, has been developed (FasTENS). Per coprire il range di velocità compreso tra 1-10 m/s, che separa i sistemi servo-idraulici convenzionali dalla SHPB, nel Laboratorio di Affidabilità e Sicurezza del Politecnico di Torino è stato appositamente sviluppato un sistema di trazione rapida a funzionamento pneumatico denominato FasTens. Lo schema di sinistra riportata il principio di funzionamento dell’attrezzatura e a destra potete osservare l’attrezzatura e alcuni suoi dettagli: in breve un cilindro pneumatico speciale di grande alesaggio viene caricato in pressione fino ad un massimo di 10 bar, e trattenuto nella posizione di inizio prova. Raggiunta la pressione voluta nella camera di alimentazione, il pistone viene rilasciato con un sistema di rilascio rapido, accelera e raggiunta la velocità di prova aggancia il provino e lo deforma ad una velocità variabile tra 1 e 10 m/s. Lo spostamento dell’estremità mobile del provino è rilevato da un trasduttore laser a triangolazione, mentre l’estremità fissa è direttamente collegata ad una cella di carico dinamica piezoelettrica o estensimetrica
Dynamic compression: ComPULSE Pneumatically actuated Maximum speed up to 15 m/s Maximum available energy 3 kJ Load measurement with piezoelectric load cells, maximum load 220 kN Stroke measurement with laser transducer (Keyence) Suitable also for tensile, bending, and other tests using special fixtures
Low/high temperature testing A climatic chamber coupled with the ComPULSE equipment, was developed for dynamical tests down to -–40°C (will be further improved to be pushed down to -80°C) and up to 100°C The sample (or component) can be conditioned but also tested at various controlled temperatures
Concluding remarks The mechanical characterization of materials is one of the first steps in the design of high performance structures The spectrum of mechanical tests available is very large, to cover many possibility of loading, even far beyond established standard Custom testing solutions are routinely developed, and will be likely to be developed for innovative and advanced materials In most cases a single type of test is not sufficient to describe in details the properties and behaviour of an advanced material or composite
Experimental methods for material measurements at high strain-rate Workshop on Materials for Collimators and Beam Absorbers Experimental methods for material measurements at high strain-rate Lorenzo Peroni, Massimiliano Avalle Dipartimento di Meccanica, Politecnico di Torino Thank you for your attention!