Neutrino mixing angle θ 13 In a SUSY SO(10) GUT Xiangdong Ji Peking University University of Maryland.

Slides:



Advertisements
Similar presentations
LRP2010 WG5 Fundamental Interactions Nathal Severijns ( K.U.Leuven) for WG5 Scoping workshop Frankfurt, October th 2009.
Advertisements

1 Probing CP violation in neutrino oscillations with neutrino telescopes Kfir Blum, Yosef Nir, Eli Waxman arXiv: [hep-ph]
Double Chooz: Collaboration, Experimental concept, Detector, Physics Prospect, Status & Schedule, Summary.
The mass of the Higgs boson, the great desert, and asymptotic safety of gravity.
Date D 0 -D 0 Oscillation Niels van de Vegte & Roel Tempelaar Supervisor: Johan Messchendorp Kernfysisch Versneller Instituut.
1Chris Parkes Part II CP Violation in the SM Chris Parkes.
TeV scale Universal seesaw, vacuum stability and Heavy Higgs at the LHC Yongchao Zhang ( 张永超 ) Center for High-Energy Physics, Peking University w/ Rabi.
September SO(10) SUSY GUT in 5 D. September Takeshi Fukuyama (Ritsumeikan University) Based on the works in collaboration with T. Kikuchi,
Amand Faessler, München, 24. November Double Beta Decay and Physics beyond the Standard Model Amand Faessler Tuebingen Accuracy of the Nuclear Matrix.
Oscillation formalism
Schleching 2/2008Präzisionsphysik mit Neutronen/5. Theorie n-Zerfall Neutron Decay St.Petersburg 1 5. zur Theorie β-Zerfall des Neutrons.
Morimitsu Tanimoto Niigata University Morimitsu Tanimoto Niigata University Masses and Mixings of Quark-Lepton in the non-Abelian Discrete Symmetry VI.
Neutrino physics using Nuclear Reactors J. Magnin Centro Brasileiro de Pesquisas Físicas Rio de Janeiro - Brazil.
Resonant Leptogenesis In S4 Model Nguyen Thanh Phong Cantho University In cooperation with Prof. CSKim, SKKang and Dr. YHAhn (work in progress)
Non-zero |U e3 | and Quark-Lepton in Discrete Symmetry Y.H.Ahn based on Phys.Rev.D83:076012,2011. working with Hai-Yang Cheng and S.C.Oh 년 8 월 17.
Morimitsu TANIMOTO Niigata University, Japan Prediction of U e3 and cosθ 23 from Discrete symmetry XXXXth RENCONTRES DE MORIOND March 6, La Thuile,
1 3+2 Neutrino Phenomenology and Studies at MiniBooNE PHENO 2007 Symposium May 7-9, 2007 U. Wisconsin, Madison Georgia Karagiorgi, Columbia University.
Sergio Palomares-Ruiz June 22, 2005 Super-NO A Based on O. Mena, SPR and S. Pascoli hep-ph/ a long-baseline neutrino experiment with two off-axis.
Amand Faessler, GERDA, 11. November Double Beta Decay and Neutrino Masses Amand Faessler Tuebingen Accuracy of the Nuclear Matrix Elements. It determines.
The classically conformal B-L extended standard model Yuta Orikasa Satoshi Iso(KEK,SOKENDAI) Nobuchika Okada(University of Alabama) Phys.Lett.B676(2009)81.
Recent Discoveries in Neutrino Physics: Understanding Neutrino Oscillations 2-3 neutrino detectors with variable baseline 1500 ft nuclear reactor Determining.
 Rafael Sierra. 1) A short review of the basic information about neutrinos. 2) Some of the history behind neutrinos and neutrino oscillations. 3) The.
Status of Neutrino Science Hitoshi Murayama LBNLnu April 11, 2003.
Neutrinos and Flavour G.G.Ross, Coseners House, May 03 What is the origin of the Quark and lepton masses, mixing angles and CP violating phases? Family?
G. Sullivan - Princeton - Mar 2002 What Have We Learned from Super-K? –Before Super-K –SK-I ( ) Atmospheric Solar –SNO & SK-I Active solar –SK.
Neutrino Physics II David Schmitz Fermi National Accelerator Laboratory On behalf of the MINER A Collaboration CTEQ Summer School 2011 Madison, Wisconsin.
Neutrino Mass and Mixing David Sinclair Carleton University PIC2004.
Probing Majorana Neutrinos in Rare Meson Decays Claudio Dib UTFSM I.S. & B.K. Fest, UTFSM, May 2010 G. Cvetic, C.D., S.K. Kang, C.S. Kim, PRD 82, ,
1 Unification of Quarks and Leptons or Quark-Lepton Complementarities Bo-Qiang Ma Peking University (PKU) Peking University (PKU) in collaboration with.
3 Neutrino Oscillation and Off-axis Experiments David Barnhill UCLA May 30, 2003.
March 2005 Theme Group 2 Perspectives on Grand Unification in View of Neutrino Mass R. N. Mohapatra University of Maryland.
Neutrino Oscillations Or how we know most of what we know.
APS Neutrino Study: Reactor Working Group Beyond   Gabriela Barenboim.
Neutrino Physics - Lecture 3 Steve Elliott LANL Staff Member UNM Adjunct Professor ,
Aug 29-31, 2005M. Jezabek1 Generation of Quark and Lepton Masses in the Standard Model International WE Heraeus Summer School on Flavour Physics and CP.
Current Status of Neutrino Physics 2012 NRF workshop on Flavor and Collider Physics Yonsei University June 8~9, 2012 Sin Kyu Kang (Seoul-Tech )
1 V. Antonelli, G. Battistoni, P. Ferrario 1, S. Forte (Università degli Studi di Milano e I.N.F.N. Sezione di Milano and 1 University of Valencia) Standard.
0 Physics of Neutrinos From Boris Kayser, Fermilab.
Anarchy, Neutrinoless double beta decay and Leptogenesis Xiaochuan Lu and Hitoshi Murayama NuFact 2013, Aug 22nd UC Berkeley.
1 Neutrino Phenomenology Boris Kayser Scottish Summer School August 11,
Neutrino oscillation physics Alberto Gago PUCP CTEQ-FERMILAB School 2012 Lima, Perú - PUCP.
Francis Ngouniba Ki Tezpur University, Ind ia Quasi-Degenerate Neutrinos and Leptogenesis Ist IAS-CERN, NTU-SINGAPORE Jan 26, 2012 Specialized Knowledge.
Physics of sin 2 2θ 13 ★ What is θ 13 ? ★ What does sin 2 2θ 13 mean? sin 2 2θ 13 measures the oscillation amplitude of reactor neutrinos, e.g., at Daya.
The CKM matrix & its parametrizations
Michel Gonin – Ecole Polytechnique – France : SUPER NOVA SN1987A Super-Kamiokande Introduction neutrino oscillations mixing matrices Introduction.
Quark-Lepton Complementarity in light of recent T2K & MINOS experiments November 18, 2011 Yonsei University Sin Kyu Kang ( 서울과학기술대학교 )
SUSY GUT Predictions for Neutrino Oscillation Mu-Chun Chen Brookhaven National Laboratory DUSEL Workshop, January 4-7, 2005 University of Colorado at Boulder.
Probing Majorana Neutrinos in the LHC Era YongPyong2010 Seoul National University of Tech. Sin Kyu Kang.
季向东 (Xiangdong Ji) Shanghai JiaoTong University /University of Maryland.
NWG Presentation Heeger, Freedman, Kadel, Luk LBNL, April 11, 2003 Reactor Neutrino Measurement of  13 Searching for Subdominant Oscillations in e  ,
Grand Unification and Neutrino Masses
NEUTRINO MASS, MIXING & OSCILLATION
Neutrino Masses and Flavor Mixing H. Fritzsch.
Neutrino Masses and Flavor Mixing H. Fritzsch LMU Munich.
Modeles Theoriques Andrea Romanino CERN.
Outstanding Problems in Neutrino Physics
Beyond the Standard Model- The elusive neutrinos -
Neutrino Oscillations and T2K
Non-unitary deviation from the tri-bimaximal mixing and neutrino oscillations Shu Luo The Summer Topical Seminar on Frontier of Particle Physics.
Flavor Mixing of quarks.
Classically conformal B-L extended Standard Model
SU(3) Gauge Family Model for Neutrino Mixing and Masses
A Study on Loop-Induced Neutrino Masses
高能物理所 张贺 高能物理学会第七届年会 2006年10月29日
Quark and lepton masses
Neutrino oscillation physics
Double beta decay and Leptogenesis
Neutrino Masses and Mixings
Neutrino Oscillations
The Neutrino World: Present and Future Boris Kayser
Presentation transcript:

Neutrino mixing angle θ 13 In a SUSY SO(10) GUT Xiangdong Ji Peking University University of Maryland

Outline 1. Neutrino (lepton) mixing 2. Why SUSY SO(10)? 3. A new SUSY SO(10) model 4. Looking ahead X. Ji, Y. Li, R. Mohapatra, Phys. Lett. B633, 755 (2006) hep-ph/

Neutrino (lepton) mixing Neutrinos, like quarks, have both masses and weak charges (flavor), and the mass eigenstates are not the same as the flavor eigenstates. One can write the neutrino of a definite flavor as Where U is the neutrino (or lepton) mixing matrix.

Three flavors From the standard model, we know there are at least 3 neutrino flavor (e,μ,τ), therefore, there are at least three mass eigenstates. In the minimal case, we have 3-mixing angle (θ 12 θ 23 θ 13 ) and 1(Dirac)+2(Majorana) CP- violating phases PNMS matrix

What do we know? From past experiments, we know θ 12 & θ 23 quite well Solar-ν mixing angle θ 12 Super-K, SNO, KamLand sin 2 θ 12 = 0.30 ±0.07 Atmosphetic-ν mixing angle θ 23 Super-K, K2K, sin 2 θ 23 = 0.52 ±0.20 There is an upper bound on θ 13 sin 2 θ 23 < or sin 2 2θ 23 < 0.1 from Chooz exp.

Solar mixing angle

Current limit on θ 13 Chooz

Why do we care about precision on θ 13 Three important questions in neutrino physics What is the neutrino mass hierarchy? Are neutrinos Dirac or Majorana particles? What is the CP violation in lepton sector? CP violation Important for understanding baryon genesis in the universe One of the major goals for neutrino superbeam expts. Is related to the size of θ 13 (Jarlskog invariant)

Upcoming experiments Reactor neutrinos Double Chooz, <0.03 approved Daya Bay <0.01? US-China collaboration? Braidwood <0.01 $100M Neutrino superbeams Much more expensives hundreds of Million $ nuclear reactor detector 1 detector 2 Distance (km) P ee PeePee

Theories on neutrino mixing angles Top-down approach Assume a fundamental theory which accommodates the neutrino mixing and derive the mixing parameters from the constraints of the model. Bottom-up approach From experimental data, look for symmetry patterns and derive neutrino texture.

Why a GUT theory? Unifies the quarks and leptons, and treat the neutrinos in the same way as for the other elementary particles. A SO(10) GUT naturally contains a GUT scale mass for right-handed neutrinos and allows the sea-saw mechanism Which explains why neutrino mass is so much smaller than other fermions!

SUSY SO(10) GUT There are two popular ways to break SUSY SO(10) to SU(5) to SM Low-dimensional Higgs 16, 16-bar, 45, s (break B-L symmetry) can be easily obtained from string theory High-dimensional Higgs 126, 126-bar, 120, 10 does not break R-parity (Z 2 ), hence allows SUSY dark matter candidates. R = (-1) 3(B-L)+2S

What can SUSY SO(10) GUTs achieve? SUSY GUT Stabilize weak scale & dark matter Coupling constant unification Delay proton decay Mass pattern for quarks and leptons Flavor mixing & CP violation Neutrino masses and mixing Mixing θ H large θ 13 sin 2 2θ 13 ~ 0.16 (Mohapatra etal) 16 H small θ 13 sin 2 2θ 13 < 0.01 (Albright, Barr)

Albright-Barr Model Fermions in 16-spinor rep. 16 = 3 (up) + 3 (up-bar) + 3 (down) + 3 (down-bar) + 1 (e) + 1 (e-bar) + 1(nu-L) + 1(nu-R) Assume 3-generations 16 i (i=1,2,3) Mass term For example, eta contribute the mass to the first family, up quark, down quark, electrons and electron neutrino

Mass matrices Dirac masses Majorana Masses Lopsidedness

Diagonalization An arbitrary complex matrix can be diagonalized by two unitary matrices M D = L (m 1, m 2 m 3 )R + Majorana neutrino mass matrix is complex and symmetric, and can be diagonalized by a unitary matrix M M = U (m 1, m 2 m 3 )U *

CKM & lepton mixing The quark-mixing CKM matrix is almost diagonal The lepton mixing matrix (large mixing)

Large solar mixing angle It can either be generated from lepton or neutrino or a combination of both. From lepton matrix, Babu and Barr, PLB525, 289 (2002) again very small sin 2 2θ 13 < 0.01 If it is generated from neutrino mass matrix, it can come from either Dirac or Majorana mass or a mixture of both. In the Albright-Barr model, the large solar mixing comes from the Majorana mass. Fine tuning….

Lopsided mass matrix Generate the large atmospheric mixing angle from lepton mass matrix. Georgi-Jarlskog relation Why

A model ( Ji,Li,Mohapatra ) Assume the large solar mixing is generated from the neutrino Dirac mass and the Majorana mass term is simple The above mass terms can be generated from 16, 16-bar & 45

What can the model predict ? In the non-neutrino sector, there are 10 parameters, which can be determined by 3 up-type, and 3-lepton masses, and 4 CKM parameters. 3 down quark masses come out as predictions In the neutrino sector, we use solar mixing angle and mass ratios as input Prediction: right-handed neutrino spectrum Atmospheric mixing and θ 13

Predictions

Looking ahead Leptogenesis Baryon number asymmetry cannot be generated at just the EW scale (CP violation too small) CP-violating decay of heavy majorana neutrino generates net lepton number L. The lepton number can be converted into B- number through sphaleron effects (B-L conserved.) Does model generates enough lepton number asymmetry?

Looking ahead Proton Decay Is the proton decay too fast? Dimension-5 operator from the exchange of charged Higgsino.