September SO(10) SUSY GUT in 5 D. September Takeshi Fukuyama (Ritsumeikan University) Based on the works in collaboration with T. Kikuchi,

Slides:



Advertisements
Similar presentations
March 2005 Theme Group 2 Neutrino Mass and Grand Unification R. N. Mohapatra University of Maryland LAUNCH, 2007 Heidelberg.
Advertisements

Higher dimensional seesaw Atsushi WATANABE Niigata Univ. & The Max-Planck-Institute for Nuclear Physics 23 rd February HRI, Allahabad Based on the.
 Symmetries and vanishing couplings in string-derived low-energy effective field theory              Tatsuo Kobayashi 1.Introduction.
Quark and Lepton Mixing in S 4 Flavor Model September 28, 2010 Max-Planck-Institut für Kernphysik Heidelberg, Germany Morimitsu Tanimoto (Niigata University)
Problems with the MSSM : mu & proton decay Stuart Raby KMI Nagoya University October 24, 2011.
Hep-ph/ , with M. Carena (FNAL), E. Pontón (Columbia) and C. Wagner (ANL) New Ideas in Randall-Sundrum Models José Santiago Theory Group (FNAL)
Nucleon Decay Stuart Raby DUSEL 2010 Rapid City, SD October 2, 2010.
Higgs Boson Mass In Gauge-Mediated Supersymmetry Breaking Abdelhamid Albaid In collaboration with Prof. K. S. Babu Spring 2012 Physics Seminar Wichita.
Hadronic EDMs in SUSY GUTs
June 18, 2004Mitsuru Kakizaki1 Democratic (s)fermions and lepton flavor violation Mitsuru Kakizaki (ICRR, University of Tokyo) June 18, 2004 We propose.
May 25, 2004Kakizaki, Mitsuru1 Flavor structure in supersymmetric models Kakizaki, Mitsuru (ICRR, University of Tokyo) May 25, 2004 We proposed a new alignment.
Oct. 25, 2004Mitsuru Kakizaki1 Flavor structure in supersymmetric models Mitsuru Kakizaki (ICRR, University of Tokyo) Oct. 25, Ochanomizu University.
Richard Howl The Minimal Exceptional Supersymmetric Standard Model University of Southampton UK BSM 2007.
Fermion Masses and Unification Steve King University of Southampton.
Fermion Masses and Unification Lecture I Fermion Masses and Mixings Lecture II Unification Lecture III Family Symmetry and Unification Lecture IV SU(3),
July 19, 2005Mitsuru Kakizaki1 Hadronic EDMs in SUSY GUTs Mitsuru Kakizaki (ICRR, Univ. of Tokyo) July 19, IPPP We investigate hadronic EDMs induced.
Fermion Masses and Unification Steve King University of Southampton.
Title of talk1 On the Heterotic Road to the MSSM Stuart Raby Eotvos-Cornell 2007 Budapest, Hungary June 29, 2007.
Review of the present status of SO(10) GUT Universitry of Southampton March 7, ‘08 Takeshi Fukuyama (Ritsumeikan University)
July 12, 2005Mitsuru Kakizaki1 Hadronic EDMs in SUSY GUTs Mitsuru Kakizaki (ICRR, Univ. of Tokyo) July 12, Nagoya University We investigate hadronic.
Aug 29-31, 2005M. Jezabek1 Generation of Quark and Lepton Masses in the Standard Model International WE Heraeus Summer School on Flavour Physics and CP.
 Collaboration with Prof. Sin Kyu Kang and Prof. We-Fu Chang arXiv: [hep-ph] submitted to JHEP.
Fermion Masses and Unification Steve King University of Southampton.
A.F.Kord Sabzevar Tarbiat Moallem University (Iran) September 2011.
Minimal SO(10)×A4 SUSY GUT ABDELHAMID ALBAID In Collaboration with K. S. BABU Oklahoma State University.
Low scale gravity mediation in warped extra dimensions and collider phenomenology on sector hidden sector LCWS 06, March 10, Bangalore Nobuchika.
Hep-ph/ , with M. Carena (FNAL), E. Pontón (Columbia) and C. Wagner (ANL) Light KK modes in Custodially Symmetric Randall-Sundrum José Santiago Theory.
Wednesday, Apr. 23, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #24 Wednesday, Apr. 23, 2003 Dr. Jae Yu Issues with SM picture Introduction.
1 Supersymmetry Yasuhiro Okada (KEK) January 14, 2005, at KEK.
Low scale supergravity mediation in brane world scenario and hidden sector phenomenology Phys.Rev.D74:055005,2006 ( arXiv: hep-ph/ ) ACFA07 in Beijing:
1 Lepton Electric Dipole Moments in Supersymmetric Type II Seesaw Model Toru Goto, Takayuki Kubo and Yasuhiro Okada, “Lepton electric dipole moments in.
Title of talk1 Unification & B-L in String Theory Stuart Raby B-L Workshop, LBL September 21, 2007.
Family Symmetry Solution to the SUSY Flavour and CP Problems Plan of talk: I.Family Symmetry II.Solving SUSY Flavour and CP Problems Work with and Michal.
Ohio State DUSEL Theory Workshop Stuart Raby Underground Detectors Investigating Grand Unification Brookhaven National Lab October 16, 2008.
Flavor induced EDMs with tanbeta enhanced corrections Minoru Nagai (ICRR, Univ. of Tokyo) Aug. 4, 2007 Summer Institute 2007 In collaborated with: J.Hisano.
Yasuhiro Okada (KEK) February 4, 2005 at KEK
Neutrino mass and DM direct detection Daijiro Suematsu (Kanazawa Univ.) Erice Sept., 2013 Based on the collaboration with S.Kashiwase PRD86 (2012)
Duality in Left-Right Symmetric Seesaw Mechanism Michele Frigerio Service de Physique Théorique, CEA/Saclay Rencontres de Physique des Particules March.
Takaaki Nomura(Saitama univ)
Nobuchika Okada The University of Alabama Miami 2015, Fort Lauderdale, Dec , GeV Higgs Boson mass from 5D gauge-Higgs unification In collaboration.
Supersymmetric B-L Extended Standard Model with Right-Handed Neutrino Dark Matter Nobuchika Okada Miami Fort Lauderdale, Dec , 2010 University.
SUSY GUT Predictions for Neutrino Oscillation Mu-Chun Chen Brookhaven National Laboratory DUSEL Workshop, January 4-7, 2005 University of Colorado at Boulder.
Family Gauge Bosons with an Inverted Mass Hierarchy Yoshio Koide (Osaka University) in collaboration with Toshifumi Yamashita (Maskawa Insititute, KSU)
Constructing 5D Orbifold GUTs from Heterotic Strings w/ R.J. Zhang and T. Kobayashi Phys. Lett. B593, 262 (2004) & Nucl. Phys. B704, 3 (2005) w/ A. Wingerter.
EDMs in the SUSY GUTs Junji Hisano (ICRR, Univ. of Tokyo) NuFact04 6th International Workshop on Neutrino Factories and Superbeams, Osaka University, Japan.
1-2 Mass Degeneration in the Leptonic Sector Hiroyuki ISHIDA (Tohoku University) Collaboration with : Takeshi ARAKI (MISC) Ref ; T. Araki and H.I. arXiv.
Sfermion Flavor and Proton Decay in Minimal SU(5) GUT with High-scale SUSY Natsumi Nagata 26 June, 2014 PASCOS 2014 Warsaw, Poland Based on N. Nagata and.
Title of talk1 The Heterotic Road to the MSSM Stuart Raby Seoul National University June 10, 2008.
and what we unsuccessfully tried to explain (so far)
Grand Unification and Neutrino Masses
Metastable supersymmetry breaking vacua from conformal dynamics
Unified Modes and Collider Experiments
Takaaki Nomura(Saitama univ)
Three family GUT-like models from heterotic string
Classically conformal B-L extended Standard Model
The Flavor of the Composite Twin Higgs
Magnetic supersymmetry breaking
Belle II の物理 (high-ish scale) SUSY
Hadronic EDMs in SUSY GUTs
The Flavour Problem and Family Symmetry
Minoru Nagai (ICRR, Univ. of Tokyo)
The MESSM The Minimal Exceptional Supersymmetric Standard Model
Lepton Flavor Violation
Gauge-Higgs Dark Matter
Explaining the flavour anomalies with Leptoquarks
Quark and lepton masses
Electric Dipole Moments in PseudoDirac Gauginos
Muon Physics Yasuhiro Okada (KEK) November 18, 2005
Searching for New Physics in muon lepton flavor violating processes
Lepton Flavor Violation
Presentation transcript:

September SO(10) SUSY GUT in 5 D. September Takeshi Fukuyama (Ritsumeikan University) Based on the works in collaboration with T. Kikuchi, N. Okada, A. Ilakovac and S. Meljanac. References: JHEP 0211 (2002); Phys. Rev. D 68 (2003); Int. J. Mod. Phys. A19 (2004); JHEP 0409 (2004); J. Math. Phys. 46 (2005); JHEP 0505 (2005); Phys.Rev.D75 (2007) With N.Haba and N.Okada: works in preparation

Table of Contents 1. Breif review of the minimal SO(10) model. 2. Problems in the model as a 4D GUT 3. Embedding the model in flat or warped 5D space 4. Summary

Minimal SO(10) model Two kinds of symmetric Yukawa couplingsTwo kinds of symmetric Yukawa couplings Two Higgs fields are decomposed toTwo Higgs fields are decomposed to SU(4) adjoint 15 have a basis, so as to satisfy the traceless condition. Putting leptons into the 4 th color, we get, so called, ‘Georgi-Jarslkog’ factor, for leptons.SU(4) adjoint 15 have a basis, so as to satisfy the traceless condition. Putting leptons into the 4 th color, we get, so called, ‘Georgi-Jarslkog’ factor, for leptons. (Babu-Mohapatra (93’); Fukuyama-Okada (01’))

Mass relation All the mass matrices are descried by only two fundamental matrices.All the mass matrices are descried by only two fundamental matrices. 13 inputs : 6 quark masses, 3 angles + 1 phase in CKM matrix,13 inputs : 6 quark masses, 3 angles + 1 phase in CKM matrix, 3 charged-lepton masses. 3 charged-lepton masses. ⇒ fix and ⇒ fix and ⇒ predictions in the parameters in the neutrino sector! ⇒ predictions in the parameters in the neutrino sector!

Predictions in neutrino sector We have only one parameter, left free. So, we can make definite predictions.We have only one parameter, left free. So, we can make definite predictions.

Now, all the mass matrices have been determined!Now, all the mass matrices have been determined! For example, Neutrino Dirac Yukawa coupling matrix (in the basis where charged lepton mass matrix is diagonal):For example, Neutrino Dirac Yukawa coupling matrix (in the basis where charged lepton mass matrix is diagonal): We must check this model by proving the other phenomena related to the Yukawa couplings! (LFV, muon g-2, EDM, neutrino magnetic dipole moment (MDM), proton decay, etc.)We must check this model by proving the other phenomena related to the Yukawa couplings! (LFV, muon g-2, EDM, neutrino magnetic dipole moment (MDM), proton decay, etc.) Yukawa’s are determined!

The prediction about For fixedFor fixed

Input parameters providing close to the present upper bound predict suitable magnitude for muon g-2.Input parameters providing close to the present upper bound predict suitable magnitude for muon g-2. The prediction about muon g-2

Superpotential was fully analyzed Fukuyama et.al. hep-ph/ v1 gave the symmetry breaking pattern of minimal SO(10) to Standard Model,starting from

2. Problems of 4D SO(10) GUT Fast Proton Decay. Many intermediate energy scales break the gauge coupling unification since we have five directions which are singlet under G_{321}.

Proton decay in SUSY GUT In the minimal SO(10) model, and the Wilson coefficients can be written as:In the minimal SO(10) model, and the Wilson coefficients can be written as: In SUSY models, the color triplet Higgsinos mediate the proton decay induced by the following baryon and lepton number violating dimension five operatorIn SUSY models, the color triplet Higgsinos mediate the proton decay induced by the following baryon and lepton number violating dimension five operator

Discard (6,1,1) in the PS model

Proton decay rate formula

Parameters in Higgs sector-(i)

Parameters in Higgs sector-(ii)

Proton decay in SO(10) GUT-(i) The green region is the allowed region. In case of, there is large enough parameter space which cancels the proton decay rate, though it is very tiny region in case of.

Proton decay in SO(10) GUT-(ii) The green region is the allowed region. In case of, there is large enough parameter space which cancels the proton decay rate, though it is very tiny region in case of.

The gauge coupling unification From Bertolini-Scwetz-Malinsky hep- ph/

Solution by warped extra dimension -First approach- 1.A variety of Higgs mass spectra destroys the successful gauge coupling unification in the MSSM. Especially, the existence of the intermediate mass scale for the right-handed neutrino cause a problem. 2.This model has a cut off scale at the GUT scale. It means that a concrete UV completion of the model is necessary to be considered. We explore to solve these problems by changing the 4D flat space to the 5D Randall-Sundrum type warped background. 1.This model can easily provide a natural suppression for the Yukawa couplings by a wave function localization. 2.UV completion is provided by a strong gravity. (cf. AdS/CFT)

On the other hand, neutrino oscillation data shows the existence of the intermediate mass scale, which may destabilize the successful gauge coupling unification in the MSSM. How to solve this mild hierarchy problem? In order to realize the gauge coupling unification, the simplest way is to put all the VEV’s at the GUT scale. It is necessary to have an additional suppression as follows

World of Extra Dimension

A solution to the mass hierarchy problem In these days, there is a natural solution to provide a large mass hierarchy. In the Randall-Sundrum scenario, the exponentially warped metric can be used to explain any mass hierarchy. The Setup We assume a 5D warped space: In SUSY models in 5D, any chiral multiplets become a part of hypermultiplet and vector multiplet is extended to include an adjoint scalar. By assigning an even/odd parity for, only has a zero mode wave function. This assignment also allows a bulk mass term for them.

Effect of the VEV for the adjoint scalar If we take into account of the VEV for the adjoint scalar in the vector multiplet, the bulk mass term is shifted as follows [Kitano-Li (03’)] : For the parity conservation, the adjoint VEV which has an odd parity should have the following form: In the context of the Left-Right symmetric gauge theory, providing the VEV only for the right-handed part provides an explanation for the mild hierarchy.

So we can determine the profile of wave function from group propery.

Solution by orbifold -Second Approah- Kawamura(’01),Hall-Nomura(’01),Dermisek-Mafi(’01) Raby-H.D.Kim Proton decay is suppressed by BC. BC breaks SU(5) into MSSM with direct no coupling with triplet, but does SO(10) into Pati-Salam which includes it in general,

For SO(10), there are many set ups even in. y=0 visible and vev of PS singlet at y=pi/2 brane destroys SUSY. y=pi/2 visible and vev of SO(10) singlet at y=0 branes destroys SUSY – today’s talk. In both cases, PS invariance play the crucial role for the protect from the fast proton decay. We can exclude (6,1,1) which was harmful, included in full SO(10) invariant theory.

Our Setup SO(10) inv PS inv vev of (10,1,3) Standard y=0 y= pi/2 Inviible visible

Gauge coupling unification

Summary The explicit construction of Higgs superpotetial revealed the precise spectra of intermediate enrgy specta to standard. It led to the destruction of gauge coupling unification. It may lead to the incompatibility with proton stability In order to circumvent these pathologies, we are forced to put it in extra dimensions. We considered SO(10) in 5 D in two ways. One is to break SO(10) by the vev of bulk, which may explain tha mass spectra. Another is to break SO(10) by using both the boundary conditions and vev. This preserves the advantageous points of SO(10) (mass relations of Dirac fermions and saves the disadvantageous points of SO(10) (Proton decay and gauge unification). 4D 5D