RPC Meeting, Braunschweig Sept. 2010 Messung planetarer und interplanetarer Magnetfelder Sommersemester 2014 Lehrveranstaltung: 440.413 Dr. Konrad Schwingenschuh/ÖAW.

Slides:



Advertisements
Similar presentations
Proto-Planetary Disk and Planetary Formation
Advertisements

LECTURE 13, OCTOBER 7, 2010 ASTR 101, SECTION 3 INSTRUCTOR, JACK BRANDT 1ASTR 101-3, FALL 2010.
LECTURE 14, OCTOBER 12, 2010 ASTR 101, SECTION 3 INSTRUCTOR, JACK BRANDT 1ASTR 101-3, FALL 2010.
Ganymede Lander Page 1 - Magnetometer Proposal -Moscow, Magnetic Field Measurement Onboard a Ganymede Lander Experiment Proposal Based on Experiences.
Chapter 6 The Solar System. 6.1 An Inventory of the Solar System 6.2 Measuring the Planets 6.3 The Overall Layout of the Solar System Computing Planetary.
Minor bodies observation from Earth and space: asteroid (2867)Steins A. Coradini, M.T. Capria, F. Capaccioni, and the VIRTIS International Team.
Solar wind interaction with the comet Halley and Venus
Does Ganymede Have a Dynamo?
4th Philae Science Workshop, Venice th Philae Science Workshop Venice, 30 March – 1 April ROMAP Status I. Apáthy, U. Auster, G. Berghofer, A.P.
The Moons of the Gas Giants Astronomy 311 Professor Lee Carkner Lecture 20.
PHILAE Science Team, Venice LTS phase: the LS standpoint prepared by HBO LTS phase: from end of FSS (mid Nov. 2014) to end of Rosetta mission (31.
Observations of Open and Closed Magnetic Field Lines at Mars: Implications for the Upper Atmosphere D.A. Brain, D.L. Mitchell, R. Lillis, R. Lin UC Berkeley.
November 2006 MERCURY OBSERVATIONS - JUNE 2006 DATA REVIEW MEETING Review of Physical Processes and Modeling Approaches "A summary of uncertain/debated.
ASTR-101 Section 020 Lecture 7 Comparative Planetology I: Our Solar System John T. McGraw, Professor Laurel Ladwig, Planetarium Manager.
Chapter 5 Our Solar System Survey of Astronomy astro1010-lee.com
Sounding the Ganymede’s crust with a GPR V. Ciarletti 1, A. Le Gall 1, M. Biancheri-Astrier 2, J-J. Berthelier 1, S.M. Clifford 3, D. Plettemeier 4, M.
International Colloquium and Workshop "Ganymede Lander: scientific goals and experiments"
Our Solar System - Jupiter Voyager 1 took this photo of the planet Jupiter on Jan. 24, 1979, while still more than 25 million miles away. The Great Red.
Copyright © 2010 Pearson Education, Inc. Our Solar System.
© 2011 Pearson Education, Inc. Chapter 6 The Solar System.
Comparative Planetology I: Our Solar System
Solar Nebula Theory How to make a solar system: 1.Start with nebula = a large cloud of dust and gas. 2.A nearby star explodes (supernova) or the nebula.
October 13, 2004Astro 249 DAWN Asteroids: 1 Ceres and 4 Vesta By Christina O. Lee.
The Solar System:. Jupiter... is the 5th planet from the sun is a gas giant has a diameter of 142,984 km (more than 300 times bigger than Earth and more.
Österreichische Akademie der Wissenschaften (ÖAW) / Institut für Weltraumforschung (IWF), Graz, Austria, T +43/316/ , iwf.oeaw.ac.atDownload:2013.
Volcanoes, Atmospheres, and Magnetospheres, Oh My!
Made by: Anuuke Vannavong. Facts Diameter (km) km Distance from Sun (km)- 57,900,000 Mass (kg)- 33 x 10 to the power of 22 (kg) Surface Gravity.
Solar System Debris. Asteroids Asteroids are relatively small. Most have eccentric orbits in the asteroid belt between Mars and Jupiter.
Filling Mars Human Exploration Strategic Knowledge Gaps with Next Generation Meteorological Instrumentation. S. Rafkin, Southwest Research Institute
ILWS Activities in Hungary K. Kecskemety KFKI RMKI Budapest, Hungary ILWS Steering Committee and Working Group Meeting Prague, June 10–12, 2008.
Chapter 6 The Solar System Planet Comparisons Property Terrestrial Planets Jovian Planets Distance CloseFar from the Sun Size SmallLarge Mass SmallLarge.
© 2011 Pearson Education, Inc. Chapter 6 The Solar System.
1 Directed by: Dr. PJ Benfield and Dr. Matt Turner Mentor : Miss Doreen Forsythe.
Comparative Planetology I: Our Solar System. Guiding Questions 1.Are all the other planets similar to Earth, or are they very different? 2.Do other planets.
Bone Trajectories and Model Simulations Kathleen Mandt, Ray Goldstein, Christoph Koenders May 29, 2013 IES Team Meeting – San Antonio.
1 Mars Micro-satellite Mission Japanese micro-satellite mission to Mars to study the plasma environment and the solar wind interaction with a weakly-magnetized.
Q08. Gravity.
Exploring the interior of icy satellites using magnetic induction Krishan K. Khurana Institute of Geophysics and Planetary Physics University of California.
Mass: 1,898,130,000,000,000,000 billion kg ( x Earth) Equatorial Diameter: 142,984 km Polar Diameter: 133,709 km Equatorial Circumference: 439,264.
Charging and motion of dust grains near the Moon and asteroids N.Borisov IZMIRAN, Russia.
The Sun & The Solar System. Structure of the Sun The Sun has layers which can be compared to the Earth’s core, mantle, crust, and atmosphere All of these.
PHILAE Science Team, Venice Philae On-Comet Science Objectives prepared by HBO Document name = Scientific Objectives of the PHILAE Mission (RO-LAN-LI-1000),
1 Hybrid Simulations of the Callisto - Magnetosphere Interaction Stas Barabash and Mats Holmström Swedish Institute of Space Physics, Kiruna, Sweden.
Lander Experiment ROMAP
Mission to Pluto Using the satellites and missions described here, plan a mission to Pluto and choose the instruments.
Chapter 4 The Solar System. Comet Tempel Chapter overview Solar system inhabitants Solar system formation Extrasolar planets.
Review for Exam 2 Chapters 5,6,7,8 PHYS 1050 May, 2002.
Electricity & Magnetism Chapter 8. Student Learning Objectives Recall properties of charge Characterize static electricity Differentiate between series.
Dokumentname > Dokumentname > B Recent Results of Comet Activity Modeling as input for RPC Plasma Simulations Recent Results of Comet.
How ARTEMIS Contributes to Key NLSI Objectives C.T. Russell, J. Halekas, V. Angelopoulos, et al. NLSI Lunar Science Conference Ames Research Center Monday,
Lecture Outlines Astronomy Today 7th Edition Chaisson/McMillan © 2011 Pearson Education, Inc. Chapter 6.
Физика плазмы в солнечной системе – 10-я конференция, ИКИ РАН, Эксперимент ФИЛА-РОМАР – плазменные измерения на поверхности кометы 67Р/ Чурумов-Герасименко.
Universe Tenth Edition Chapter 7 Comparative Planetology I: Our Solar System Roger Freedman Robert Geller William Kaufmann III.
The Solar System 1 _________________ 9 _________________ planets ________ (major) moons asteroids, comets, meteoroids.
1 Earth and Other Planets 3 November 2015 Chapter 16 Great Idea: Earth, one of the planets that orbit the Sun, formed 4.5 billion years ago from a great.
Comparative Planetology I: Our Solar System Chapter Seven.
On the Larger Picture in Cometary Science
Comparisons between Magnetic field Perturbations and model dipole moments at Europa Derek Podowitz EAS /28/2011.
Energetic Neutral Atom Imaging of
Taking a Look at a Trojan Asteroid
Section 4 – pg 488 Earth’s Moon
Satellites of the Solar System: the Moons of Jupiter
Comparative Planetology I: Our Solar System
Lunar Interior Magnetic Sounding
استكشاف المنظومة الشمسية מערכת השמש
JUPITER A Gaseous planet.
Krishan Khurana, Margaret Kivelson
THEMIS baseline + ARTEMIS
Jupiter’s Moons.
The Moons of the Gas Giants
Presentation transcript:

RPC Meeting, Braunschweig Sept Messung planetarer und interplanetarer Magnetfelder Sommersemester 2014 Lehrveranstaltung: Dr. Konrad Schwingenschuh/ÖAW 23. Mai 2014 bis 28. Mai 2014 Folien © Dr. Konrad Schwingenschuh

RPC Meeting, Braunschweig Sept Globale elektrische Leitfähigkeit: Allgemeines Magn. Fluktuationen und Sprünge des interplanetaren Magnetfeldes werden durch die elektr. Leitfähigkeit von Himmelskörpern durch magn. Diffusion gedämpft. Die Bestimmung erfolgt mittels Orbiter- und Lander- Magnetometer. Die Abschätzung der Leitfähigkeit erfolgt durch die Relation Sigma = tau / (mu_0 * L^2) ; tau... char. Diffusionszeit [s]; L... Durchmesser des Himmelskörpers (char. Länge) Beispiel: Rosetta (Kometenkern), Galileo (mögliche Ozeane auf Jupitermonden Europa, Ganymede, Callisto), Mond (Apollo 12 und Explorer 35)

RPC Meeting, Braunschweig Sept Global magnetic and electric properties of a cometary nucleus: ROSETTA combined orbiter and lander magnetic field experiment

RPC Meeting, Braunschweig Sept Magnetic properties of asteroids and comets  - previous magnetic field investigations: § - Gaspra 1993 (magnetic moment?) § - (no significant magnetic moment found) § - ROSETTA Steins 2008 (no evidence for magnetization found) § -ROSETTA-Lutetia 2010 (no evidence for an intrinsic field)  - magnetized dust & accretional remanence: § - Nüboldt 2000 § -Weiss2012  - ROSETTA 2014: remanent magnetization in the solar nebula

RPC Meeting, Braunschweig Sept Global electrical conductivity  - dual point magnetic field and global electrical conductivity [Dyal 1973]  - electromagnetic induction in the cometary nucleus  - study of time varying interplanetary magnetic field (Constantinescu 2012)  References § 1. Dyal, P. and W.P. Curtis, Global Electromagnetic Induction in the Moon and Planets, Physics of the Earth and Planetary Interior, 7 (1973) § 2. Constantinescu-et al.-2012, PSS-On the possibility to determine the electrical conductivity of 67PCG from ROSETTA magnetic field observations

RPC Meeting, Braunschweig Sept Combined measurement of ROMAP and RPC Before descent During descent After descent

RPC Meeting, Braunschweig Sept ROMAP – Reminder!  Magnetometer 2000nT range, 0.05nT resolution, 64Hz  Pressure Sensors Pirani: –10 mbar Penning: –10 -4 mbar  Electrostatic Analyzer ions: eV; electrons: eV  Faraday Cup resolution 5x – 4x10 -10

RPC Meeting, Braunschweig Sept Descent Operation  Why magnetic properties of a comet are interesting  Magnetization of processed and non-processed material is very different  Known examples are Meteorites and Asteroids  Magnetization could explain gap in planetary formation (10 -3 … 10 1 m) Determination of magnetic properties of CG Aubrite (non processed) ALHA Magnetization: 2.8mAm²/kg Diogenite (processed) MIL Magnetization: 0.05mAm²/kg

RPC Meeting, Braunschweig Sept Descent Operation  Why characterization can be done during descent only  Direct measurements of magnetization can be done at different distances  Drop off profile gives information about homogeneity  magnetic field on surface is proportional to NRM Determination of magnetic properties of CG Assumptions: Diameter: 5km Density:1.0g/cm3 NRM:0.1mAm 2 /kg a - c:aligned dipoles d – e:randomly distributed No. of dipoles: B vs. altitude

RPC Meeting, Braunschweig Sept FSS / LTS Onset & evolution of s/w interaction  Measurement Scenario  switching on time: 4 hours centered about noon  Optional (LTS): 8 hours including night  ROMAP in Surface Mode  Constraints  No common operation with “magnetic active” experiments  Favored measurement partners: Concert, Civa, Rolis, Sesame, Mupus  Operation of RPC MAG mandatory  Resources  Operation time: 4 hours (MAG & SPM)  Power consumption: 4 Watt  Data volume: 60 kbyte/hour

RPC Meeting, Braunschweig Sept LTS Combined E- and B-field & P-measurement  Conductivity investigation using variation analysis  Variation of B field (ROMAP/RPC) and E field (SESAME) shall be used to investigate global conductivity  High resolution data (64Hz) necessary, previous measurement helpful for planning effective operation  Lander Day and Night pressure measurement  Promises high scientific return about outgassing behavior  Uncertainty: Penning functionality

RPC Meeting, Braunschweig Sept Summary  Prior Separation (ICEP)  ROMAP supports RPC MAG measurements to separate s/c interferences  During Descent (SDL)  RPC-MAG supports ROMAP measurement to separate temporal variations from CG signature  On Surface (FSS and LTS)  Combined measurement of RPC and ROMAP to separate local and temporal field variation And determine the global electrical conductivity  Magnetized dust and accretional magnetism