Lesson 8 Searching and Sorting Arrays 1CS 1 Lesson 8 -- John Cole.

Slides:



Advertisements
Similar presentations
Copyright © 2014, 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Starting Out with C++ Early Objects Eighth Edition by Tony Gaddis,
Advertisements

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Starting Out with Programming Logic & Design Second Edition by Tony Gaddis.
Chapter 9: Searching, Sorting, and Algorithm Analysis
 Sort: arrange values into an order  Alphabetical  Ascending numeric  Descending numeric  Does come before or after “%”?  Two algorithms considered.
Copyright © 2012 Pearson Education, Inc. Chapter 8: Searching and Sorting Arrays.
Starting Out with C++, 3 rd Edition 1 Chapter 8 – Searching and Sorting Arrays.
C++ Plus Data Structures
CS 1400 March 30, 2007 Chapter 8 Searching and Sorting.
Algorithm Efficiency and Sorting
 2003 Prentice Hall, Inc. All rights reserved Sorting Arrays Sorting data –Important computing application –Virtually every organization must sort.
©The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 4 th Ed Chapter Chapter 11 Sorting and Searching.
Searching Arrays Linear search Binary search small arrays
Searching and Sorting Arrays
1 Sorting/Searching and File I/O Sorting Searching Reading for this lecture: L&L
Searching1 Searching The truth is out there.... searching2 Serial Search Brute force algorithm: examine each array item sequentially until either: –the.
Starting Out with C++: Early Objects 5/e © 2006 Pearson Education. All Rights Reserved Starting Out with C++: Early Objects 5 th Edition Chapter 9 Searching.
CS 106 Introduction to Computer Science I 10 / 16 / 2006 Instructor: Michael Eckmann.
Sorting and Searching Arrays CSC 1401: Introduction to Programming with Java Week 12 – Lectures 1 & 2 Wanda M. Kunkle.
Chapter 8 ARRAYS Continued
Week 11 Introduction to Computer Science and Object-Oriented Programming COMP 111 George Basham.
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Chapter 8: Searching and Sorting Arrays.
Copyright © 2012 Pearson Education, Inc. Chapter 8: Searching and Sorting Arrays.
Lecture 5 Searching and Sorting Richard Gesick. The focus Searching - examining the contents of the array to see if an element exists within the array.
Data Structures & Algorithms CHAPTER 4 Searching Ms. Manal Al-Asmari.
SEARCHING UNIT II. Divide and Conquer The most well known algorithm design strategy: 1. Divide instance of problem into two or more smaller instances.
Chapter 8 Searching and Sorting Arrays Csc 125 Introduction to C++ Fall 2005.
Copyright 2004 Scott/Jones Publishing Alternate Version of STARTING OUT WITH C++ 4 th Edition Chapter 9 Searching Arrays.
Starting Out with C++, 3 rd Edition 1 Searching an Arrays.
Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved. Chapter 8: Searching and Sorting Arrays.
Chapter Searching and Sorting Arrays 8. Introduction to Search Algorithms 8.1.
C++ Programming: From Problem Analysis to Program Design, Second Edition Chapter 19: Searching and Sorting.
Lecture 16: Searching and Sorting Arrays Professor: Dr. Miguel Alonso Jr. Fall 2008 CGS2423/COP1220.
Searching. Linear (Sequential) Search Search an array or list by checking items one at a time. Linear search is usually very simple to implement, and.
LAB#7. Insertion sort In the outer for loop, out starts at 1 and moves right. It marks the leftmost unsorted data. In the inner while loop, in starts.
CSC 211 Data Structures Lecture 13
Starting Out with C++ Early Objects Seventh Edition by Tony Gaddis, Judy Walters, and Godfrey Muganda Modified for use by MSU Dept. of Computer Science.
1 C++ Plus Data Structures Nell Dale Chapter 10 Sorting and Searching Algorithms Slides by Sylvia Sorkin, Community College of Baltimore County - Essex.
Chapter 9 slide 1 Introduction to Search Algorithms Search: locate an item in a list (array, vector, table, etc.) of information Two algorithms (methods):
Searching & Sorting Programming 2. Searching Searching is the process of determining if a target item is present in a list of items, and locating it A.
1 Introduction to Sorting Algorithms Sort: arrange values into an order Alphabetical Ascending numeric Descending numeric Two algorithms considered here.
1 Searching and Sorting Searching algorithms with simple arrays Sorting algorithms with simple arrays –Selection Sort –Insertion Sort –Bubble Sort –Quick.
1 Principles of Computer Science I Honors Section Note Set 5 CSE 1341.
©The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 4 th Ed Chapter Searching When we maintain a collection of data,
Chapter 9 Sorting. The efficiency of data handling can often be increased if the data are sorted according to some criteria of order. The first step is.
Course Code #IDCGRF001-A 5.1: Searching and sorting concepts Programming Techniques.
Java Programming: From Problem Analysis to Program Design, 4e Chapter 14 Searching and Sorting.
Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Starting Out with C++ Early Objects Seventh Edition by Tony Gaddis, Judy.
 Introduction to Search Algorithms  Linear Search  Binary Search 9-2.
Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved. Chapter 8: Searching and Sorting Arrays.
1 compares each element of the array with the search key. works well for small arrays or for unsorted arrays works for any table slow can put more commonly.
Searching Arrays Linear search Binary search small arrays
Searching and Sorting Searching algorithms with simple arrays
Searching and Sorting Arrays
Chapter 9: Sorting and Searching Arrays
Alternate Version of STARTING OUT WITH C++ 4th Edition
Searching and Sorting Arrays
Introduction to Search Algorithms
Chapter 9: Searching, Sorting, and Algorithm Analysis
Chapter 9: Searching, Sorting, and Algorithm Analysis
Sorting Algorithms.
Introduction to Search Algorithms
Searching and Sorting Arrays
Standard Version of Starting Out with C++, 4th Edition
Chapter 8 – Searching and Sorting Arrays
Searching and Sorting 1-D Arrays
Searching and Sorting Arrays
Searching and Sorting Arrays
Introduction to Sorting Algorithms
Presentation transcript:

Lesson 8 Searching and Sorting Arrays 1CS 1 Lesson 8 -- John Cole

Introduction to Search Algorithms Search: locate an item in a list of information Two algorithms we will examine: – Linear search – Binary search 2CS 1 Lesson 8 -- John Cole

Linear Search Also called the sequential search (brute force solution) Starting at the first element, this algorithm sequentially steps through an array examining each element until it locates the value it is searching for. 3CS 1 Lesson 8 -- John Cole

Linear Search - Example Array numlist contains: Searching for the the value 11, linear search examines 17, 23, 5, and 11 Searching for the the value 7, linear search examines 17, 23, 5, 11, 2, 29, and 3 4CS 1 Lesson 8 -- John Cole

Linear Search Algorithm: set found to false; set position to –1; set index to 0 while index < number of elts. and found is false if list[index] is equal to search value found = true position = index end if add 1 to index end while return position 5CS 1 Lesson 8 -- John Cole

A Linear Search Function 6CS 1 Lesson 8 -- John Cole

Linear Search - Tradeoffs Benefits: – Easy algorithm to understand – Array can be in any order Disadvantages: – Inefficient (slow): for array of N elements, examines N/2 elements on average for value in array, N elements for value not in array 7CS 1 Lesson 8 -- John Cole

Binary Search Requires array elements to be in order 1.Divides the array into three sections: – middle element – elements on one side of the middle element – elements on the other side of the middle element 2.If the middle element is the correct value, done. Otherwise, go to step 1. using only the half of the array that may contain the correct value. 3.Continue steps 1. and 2. until either the value is found or there are no more elements to examine 8CS 1 Lesson 8 -- John Cole

Binary Search - Example Array numlist2 contains: Searching for the value 11, binary search examines 11 and stops Searching for the value 7, binary search examines 11, 3, 5, and stops 9CS 1 Lesson 8 -- John Cole

Binary Search Set first index to 0. Set last index to the last subscript in the array. Set found to false. Set position to -1. While found is not true and first is less than or equal to last Set middle to the subscript half-way between array[first] and array[last]. If array[middle] equals the desired value Set found to true. Set position to middle. Else If array[middle] is greater than the desired value Set last to middle - 1. Else Set first to middle + 1. End If. End While. Return position. 10CS 1 Lesson 8 -- John Cole

A Binary Search Function int binarySearch(int array[], int size, int value) { int first = 0, // First array element last = size - 1, // Last array element middle, // Mid point of search position = -1; // Position of search value bool found = false; // Flag while (!found && first value) // If value is in lower half last = middle - 1; else first = middle + 1; // If value is in upper half } return position; } 11CS 1 Lesson 8 -- John Cole

Binary Search - Tradeoffs Benefits: – Much more efficient than linear search. For array of N elements, performs at most log 2 N comparisons Disadvantages: – Requires that array elements be sorted CS 1 Lesson 8 -- John Cole12

Sorting Algorithms Sort: arrange values into an order: – Alphabetical – Ascending numeric – Descending numeric Two algorithms considered here: – Bubble sort – Selection sort (And many others, most better than these) CS 1 Lesson 8 -- John Cole13

Bubble Sort Concept: –Compare 1 st two elements If out of order, exchange them to put in order –Move down one element, compare 2 nd and 3 rd elements, exchange if necessary. Continue until end of array. –Pass through array again, exchanging as necessary –Repeat until pass made with no exchanges –So called because smaller elements “bubble up” to the top CS 1 Lesson 8 -- John Cole14

Example – First Pass CS 1 Lesson 8 -- John Cole15 Array numlist3 contains: compare values 17 and 23 – in correct order, so no exchange compare values 23 and 5 – not in correct order, so exchange them compare values 23 and 11 – not in correct order, so exchange them

Example – Second Pass CS 1 Lesson 8 -- John Cole16 After first pass, array numlist3 contains: compare values 17 and 5 – not in correct order, so exchange them compare values 17 and 11 – not in correct order, so exchange them compare values 17 and 23 – in correct order, so no exchange

Example – Third Pass CS 1 Lesson 8 -- John Cole17 After second pass, array numlist3 contains: compare values 5 and 11 – in correct order, so no exchange compare values 11 and 17 – in correct order, so no exchange compare values 17 and 23 – in correct order, so no exchange No exchanges, so array is in order

Bubble Sort Code // Outer loop to do the sorting. do { bSwap = false; // Inner loop to do comparisons. for (int ix=0; ix<count-1; ix++) { if (unsorted[ix] > unsorted[ix+1]) { temp = unsorted[ix]; unsorted[ix] = unsorted[ix+1]; unsorted[ix+1] = temp; bSwap = true; } } while(bSwap); CS 1 Lesson 8 -- John Cole18

Bubble Sort - Analysis Benefit: – Easy to understand and implement Disadvantage: – Inefficient: slow for large arrays CS 1 Lesson 8 -- John Cole19

Selection Sort Concept for sort in ascending order: – Locate smallest element in array. Exchange it with element in position 0 – Locate next smallest element in array. Exchange it with element in position 1. – Continue until all elements are arranged in order CS 1 Lesson 8 -- John Cole20

Selection Sort - Example CS 1 Lesson 8 -- John Cole21 Array numlist contains: 1.Smallest element is 2. Exchange 2 with element in 1 st position in array:

Example (Continued) 2.Next smallest element is 3. Exchange 3 with element in 2 nd position in array: 3.Next smallest element is 11. Exchange 11 with element in 3 rd position in array: CS 1 Lesson 8 -- John Cole22

Selection Sort Function void selectionSort(int numbers[], int count) { int startScan, minIndex, minValue; for (startScan = 0; startScan < (count - 1); startScan++) { minIndex = startScan; minValue = numbers[startScan]; for(int index = startScan + 1; index < size; index++) { if (numbers[index] < minValue) { minValue = numbers[index]; minIndex = index; } numbers[minIndex] = numbers[startScan]; numbers[startScan] = minValue; } CS 1 Lesson 8 -- John Cole23

Selection Sort Analysis Benefit: – More efficient than Bubble Sort, since fewer exchanges (but still N 2 ) Disadvantage: – May not be as easy as Bubble Sort to understand (but who cares?) CS 1 Lesson 8 -- John Cole24