1 Operating Regimes of a Gyrotron Backward-Wave Oscillator Driven by an External Signal Student : Chih-Wei Liao Advisor : Yi-Sheng Yeh [ NTHU ]

Slides:



Advertisements
Similar presentations
FIGURE 7.1 Elements of the final control operation.
Advertisements

TWO STEP EQUATIONS 1. SOLVE FOR X 2. DO THE ADDITION STEP FIRST
You have been given a mission and a code. Use the code to complete the mission and you will save the world from obliteration…
Advanced Piloting Cruise Plot.
1
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 6 Author: Julia Richards and R. Scott Hawley.
1 Copyright © 2013 Elsevier Inc. All rights reserved. Appendix 01.
1 Copyright © 2010, Elsevier Inc. All rights Reserved Fig 2.1 Chapter 2.
Properties Use, share, or modify this drill on mathematic properties. There is too much material for a single class, so you’ll have to select for your.
UNITED NATIONS Shipment Details Report – January 2006.
David Burdett May 11, 2004 Package Binding for WS CDL.
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Title Subtitle.
CALENDAR.
0 - 0.
DIVIDING INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
Addition Facts
Year 6 mental test 5 second questions
Around the World AdditionSubtraction MultiplicationDivision AdditionSubtraction MultiplicationDivision.
Duration CONSTRUCTION Opening Date EQUIP INSTALL. & TEST Incheon International Airport Control Tower Outcome Progress DESIGN & AWARD : AOR 36 MONTHS.
1 OFDM Synchronization Speaker:. Wireless Access Tech. Lab. CCU Wireless Access Tech. Lab. 2 Outline OFDM System Description Synchronization What is Synchronization?
Break Time Remaining 10:00.
Factoring Quadratics — ax² + bx + c Topic
Using controlling chaos technique to suppress self-modulation in a delayed feedback traveling wave tube oscillator Nikita M. Ryskin, Oleg S. Khavroshin.
PP Test Review Sections 6-1 to 6-6
ABC Technology Project
Copyright © 2012, Elsevier Inc. All rights Reserved. 1 Chapter 7 Modeling Structure with Blocks.
1 RA III - Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Buenos Aires, Argentina, 25 – 27 October 2006 Status of observing programmes in RA.
Squares and Square Root WALK. Solve each problem REVIEW:
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
1..
© 2012 National Heart Foundation of Australia. Slide 2.
Adding Up In Chunks.
Lets play bingo!!. Calculate: MEAN Calculate: MEDIAN
MaK_Full ahead loaded 1 Alarm Page Directory (F11)
Sets Sets © 2005 Richard A. Medeiros next Patterns.
When you see… Find the zeros You think….
Chapter 5 Test Review Sections 5-1 through 5-4.
Before Between After.
Addition 1’s to 20.
25 seconds left…...
Subtraction: Adding UP
Week 1.
Lecture 4. High-gain FELs X-Ray Free Electron Lasers Igor Zagorodnov Deutsches Elektronen Synchrotron TU Darmstadt, Fachbereich May 2014.
Lecture 3. Low-gain and high-gain FELs X-Ray Free Electron Lasers Igor Zagorodnov Deutsches Elektronen Synchrotron TU Darmstadt, Fachbereich May.
We will resume in: 25 Minutes.
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
Essential Cell Biology
FIGURE 12-1 Op-amp symbols and packages.
Converting a Fraction to %
Clock will move after 1 minute
A SMALL TRUTH TO MAKE LIFE 100%
1 Unit 1 Kinematics Chapter 1 Day
PSSA Preparation.
Essential Cell Biology
Physics for Scientists & Engineers, 3rd Edition
1 Chapter 13 Nuclear Magnetic Resonance Spectroscopy.
Energy Generation in Mitochondria and Chlorplasts
Select a time to count down from the clock above
1 Student : Chih Te Huang Advisor : Yi Sheng Yeh Study of Mode Competition in Gyrotrons.
Ka and W Band TE 01 Gyro-Devices Stutend : Yo-Yen Shin Advisor : Yi Sheng Yeh Department of Electrical Engineering, Southern Taiwan University of Technology,
1 W-Band Harmonic Multiplying Gyrotron Traveling Wave Amplifier Student : ChiaWei Hung Advisor : Yi Sheng Yeh.
研究方向 Abstract This study proposes Ka-band and W-band harmonic multiplying gyro-TWTs, using distributed wall losses and attenuating severs, to improve the.
Second Harmonic TE 21 Gyrotron Backward Wave Oscillator 報 告 人:吳 庭 旭 指 導 教 授:葉 義 生 老師 南台科技大學 電機所.
Improved Distributed - Loss Gyro-TWA Yi Sheng Yeh, Chi-Wen Su, Yu-Tsung Lo, Ting-Shu Wu, Department of Electrical Engineering, Southern Taiwan University.
Presentation transcript:

1 Operating Regimes of a Gyrotron Backward-Wave Oscillator Driven by an External Signal Student : Chih-Wei Liao Advisor : Yi-Sheng Yeh [ NTHU ]

2 Stability Analysis of an Injection-Locking Gyro-BWO k z (cm -1 ) f ( G H z ) s =1 TE 11 B 0 = k G Fig. (a) Profile of the interaction structure. (b) Magnetic field. (c) Normalized field profile versus z in a gyro-BWO. The oscillation frequency on free-running operation is GHz in the gyro-BWO. Parameters are V b =100 kV, B 0 =13.8 kG, I b =5 A, α=1.1, and r c =0.09 cm. * Y. S. Yeh, T. H. Chang, and Y. C. Yu, “Stability analysis of a gyrotron backward-wave oscillation with an external injection signal,” IEEE. Trams. Plasma Sci., vol. 34, no. 4, (STUT and NTHU)

3 Amplifier Mode

4 Oscillator Plane of a Uniform Structure Gyro-BWO Driven by an External Signal A: amplifier mode regime B: mode competing regime C: phase-locking oscillation mode regime

5 2. Non-uniform Structure Fig. (a) Profile of the interaction structure. (b) Magnetic field versus z in a gyro-BWO. I st =2.43 f o = GHz. Parameters are V b =100 kV, B 0 =13.8 kG, α=1.1, and r c =0.09 cm. unstable mode

6 Phase-locking Oscillation mode (I)

7 Phase-locking Oscillation mode (II)

8 Three Operating Regimes Theory of Nonlinear Oscillations amplifier mode phase-locking oscillation mode Hard-excitation region amplifier mode competing phase-locking oscillation mode unstable mode Ref.[20]

9 Amplitude-Frequency Response

10 Oscillator Plane of a Non-uniform Structure Gyro-BWO Driven by an External Signal A: amplifier mode regime B: mode competing regime C: phase-locking oscillation mode regime

11 IV. Summary (I) There are three different operating regimes, amplifier regime, mode competing regime and phase-locking oscillation regime in a gyro-BWO driven by an external signal. Only amplifier mode occur where the beam currents are below the free- running currents. The nonlinear results of the mode are consistent with the linear theoretical results. In the phase-locking oscillation mode regime, the nonlinear results correspond to Alder’s curve. There are three possible mode, amplifier mode, unstable mode and phase-locking oscillation mode in the mode competing regime. mode competing regime amplifier regime phase-locking oscillation regime amplifier mode phase-locking oscillation mode unstable mode

12 IV. Summary (II) Due to nonlinear oscillation theory the solutions of the unstable mode are the steady-state solutions, but aren’t stable solutions. In amplitude-frequency response of gyro-BWOs driven by an external signal, the phase-locking oscillation modes occur where the driven frequencies approach the free-running frequencies. There are two competing modes, amplifier mode and phase-locking oscillation mode in the amplitude- frequency response where the gyro- BWOs are driven by low injected power signals with ∆f=0.

13 V. References (I) [1] G. S. Nusinovich and O. Dumbrajs, “Theory of gyro-backward wave oscillators with tapered magnetic field and waveguide cross section,” IEEE Trans. Plasma Sci., vol. 24, pp , Jun [2] S. Y. Park, V. L. Granatstein, and R. K. Parker, “A linear theory and design study for a gyrotron backward wave oscillator,” Int. J. Electron., vol. 57, pp , Jun [3] C. S. Kou, “Starting oscillation conditions for gyrotron backward wave oscillators,” Phys. Plasmas, vol. 1, pp. 3093–3099, Sep [4] A. K. Ganguly and S. Ahn, “Nonlinear analysis of the Gyro-BWO in three dimensions,” Int. J. Electron., vol. 67, pp. 261–276, Feb A. T. Lin, Phys. Rev. A 46, R4516 (1992). [5] A. T. Lin, “Mechanisms of efficiency enhancement in gyrotron backward- wave oscillators with tapered magnetic fields,” Phys. Rev. A, Gen. Phys., vol. 46, pp. R4516–R4519, Oct [6] M. T.Walter, R.M. Gilgenbach, P. R. Menge, and T. A. Spencer, “Effects of tapered tubes on long- pulse microwave emission from intense e-beam gyrotron-backward-wave-oscillators,” IEEE Trans. Plasma Sci., vol. 22, pp. 578–583, Oct [7] C. S. Kou, C. H. Chen, and T. J. Wu, “Mechanisms of efficiency enhancement by a tapered waveguide in gyrotron backward wave oscillators,” Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 57, pp. 7162–7168, Jun [8] M. T. Walter, R. M. Gilgenbach, J. W. Luginsland, J. M. Hochman, J. I. Rintamaki, R. L. Jaynes, Y. Y. Lau, and T. A. Spencer, “Effects of plasma tapering on gyrotron backward-wave oscillators,” IEEE Trans. Plasma Sci., vol. 24, pp. 636– 647, Jun [11] R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp. 1380–1385, Oct [9] R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp. 1380–1385, Oct [10] H. Guo, D. J. Hoppe, J. Rodgers, R. M. Perez, J. P. Tate, B. L. Conroy, V. L. Granatstein, A. M. Bhanji, P. E. Latham, G. S. Nusinovich, M. L. Naiman, and S. H. Chen, “Phase-locking of a second harmonic gyrotron oscillator using a quasioptical circulator to separate injection and output signals,” IEEE Trans. Plasma Sci., vol. 23, pp. 822–832, Oct

14 V. References (II) [11] C. S. Kou, S. H. Chen, L. R. Barnett, H. Y. Chen, and K. R. Chu, “Experimental study of an injection-locked gyrotron backward-wave oscillator,” Phys. Rev. Lett., vol. 70, pp. 924–927, Feb [12] T. H. Chang, S. H. Chen, F. H. Cheng, C. S. Kou, and K. R. Chu, “Experimental study of an injection locked Gyro-BWO,” in Proc. 24th IRMMW, 1999, pp. M–A2. [13] A. Grudiev and K. Schunemann, “Numerical analysis of an injection-locked gyrotron backward-wave oscillator with tapered sections,” Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 68, pp – , Jul [14] A. W. Fliflet and W. M. Manheimer, “Nonlinear theory of phase locked gyrotron oscillators driven by an external signal,” Phys. Rev. A, vol. 39, pp. 3422–3443, Apr [15] W. M. Manheimer, B. Levush, and T. M. Antonsen, Jr., “Equilibrium and stability of free-running, phase- locked, and mode-locked quasioptical gyrotrons,” IEEE Trans. Plasma Sci., vol. 18, pp. 350–368, Jun [16] R. A. York and T. Itoh, “Injection- and phase-locking techniques for beam control,” IEEE Trans. Microwave Theory Tech., vol. 46, pp. 1920–1929, Nov [17] K. R. Chu, H. Y. Chen, C. L. Hung, T. H. Chang, L. R. Barnett, S. H. Chen, T. T. Yang, and D. Dialetis, “Theory and experiment of ultrahigh gain gyrotron traveling-wave amplifier,” IEEE Trans. Plasma. Sci., vol. 27, no. 2, pp. 391–404, Apr [18] K. R. Chu, H. Y. Chen, C. L. Hung, T. H. Chang, L. R. Barnett, S. H. Chen, and T. T. Yang, “Ultra high gain gyrotron traveling wave amplifier,” Phys. Rev. Lett., vol. 81, no. 21, pp. 4760–4763, Nov [19] C. S. Kou, “Backward traveling wave amplification in the gyrotron ” Phys. Plasmas, vol. 4, no. 11, pp , [20]A. H. McCurdy, A. K. Ganguly, C. M. Armstrong, “Operation of a driven single-mode electron cyclotron master,” Phys. Rev. A, vol. 40, no. 3, pp , [21]Y. S. Yeh, T. H. Chang, and Y. C. Yu, “Stability analysis of a gyrotron backward-wave oscillation with an external injection signal,” IEEE. Trams. Plasma Sci., vol. 34, no. 4, pp , Aug