Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Enzyme Kinetics.

Slides:



Advertisements
Similar presentations
METABOLISM.
Advertisements

Enzyme Kinetics C483 Spring 2013.
Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Chapter 14 Enzyme Kinetics to accompany Biochemistry, 2/e by Reginald.
Kinetics: Reaction Order Reaction Order: the number of reactant molecules that need to come together to generate a product. A unimolecular S  P reaction.
ENZYMES: KINETICS, INHIBITION, REGULATION
Enzymes, con't.. Substrate Activation (catalytic mechanisms) Strain on substrate –Weakens bonds –Makes more accessible for reaction Acid/base catalysis.
Enzyme Kinetics, Inhibition, and Control
Enzyme Kinetic Zhi Hui.
Chapter 7 Chem 341 Suroviec Fall I. Introduction The structure and mechanism can reveal quite a bit about an enzyme’s function.
ENZYMES A protein with catalytic properties due to its power of specific activation.
Biochemistry Lecture 8.
Enzyme Kinetics. Rate constant (k) measures how rapidly a rxn occurs AB + C k1k1 k -1 Rate (v, velocity) = (rate constant) (concentration of reactants)
Chapter 8: Enzymes: Basic Concepts and Kinetics Copyright © 2007 by W. H. Freeman and Company Berg Tymoczko Stryer Biochemistry Sixth Edition.
General Features of Enzymes Most biological reactions are catalyzed by enzymes Most enzymes are proteins Highly specific (in reaction & reactants) Involvement.
Enzymes Have properties shared by all catalysts Enhance the rates of both forward and reverse reactions so equilibrium is achieved more rapidly Position.
Medical Biochemistry, Lecture 24
Enzymes Have properties shared by all catalysts Enhance the rates of both forward and reverse reactions so equilibrium is achieved more rapidly Position.
Enzymes: increase the rates of reactions are highly specific for their preferred substrate Can be regulated can be localized in certain organelles Can.
Enzyme Kinetics Chapter 8. Kinetics Study of rxn rates, changes with changes in experimental conditions Simplest rxn: S P –Rate meas’d by V = velocity.
Enzyme Kinetics and Catalysis II 3/24/2003. Kinetics of Enzymes Enzymes follow zero order kinetics when substrate concentrations are high. Zero order.
Chapter 12 Enzyme Kinetics, Inhibition, and Control Chapter 12 Enzyme Kinetics, Inhibition, and Control Revised 4/08/2014 Biochemistry I Dr. Loren Williams.
Chapter 13 Enzyme Kinetics
Inhibited Enzyme Kinetics Inhibitors may bind to enzyme and reduce their activity. Enzyme inhibition may be reversible or irreversible. For reversible.
IB Chemistry Topic B – Biochem
ENZYME KINETIC M. Saifur R, PhD. Course content  Enzymatic reaction  Rate of Enzyme-Catalyzed Reactions  Quatification of Substrate Concentration and.
The Behavior of Proteins: Enzymes
Champion CS Deivanayagam Center for Biophysical Sciences and Engineering University of Alabama at Birmingham Birmingham, AL Enzyme Kinetics.
Chapter 13 Enzyme Kinetics
CH13. Enzymes cXXkcZ2jWM&feature=related.
Chapter 6.3: Enzyme Kinetics CHEM 7784 Biochemistry Professor Bensley.
Chapter 5 (part 2) Enzyme Kinetics.
Enzyme Kinetics and Inhibition
Enzymes II: Enzyme Kinetics
May Alrashed. PhD.  Enzymes are protein catalyst that increase the velocity of a chemical reaction.  Enzymes are not consumed during the reaction they.
LECTURE 2: ENZYME KINETICS. 1.A catalyst lowers energy of activation by providing a different mechanism for the reaction. Both the rates of forward and.
Quiz #3 Define Enzyme Classes Systematic naming –Given a reaction (including names) –Use subclass designation if appropriate Catalytic mechanisms –Define.
Rules for deriving rate laws for simple systems 1.Write reactions involved in forming P from S 2. Write the conservation equation expressing the distribution.
Chapter 5 (part 2) Enzyme Kinetics. Rate constant (k) measures how rapidly a rxn occurs AB + C k1k1 k -1 Rate (v, velocity) = (rate constant) (concentration.
Biochemistry Lecture 8. Why Enzymes? Higher reaction rates Greater reaction specificity Milder reaction conditions Capacity for regulation Metabolites.
Picture of an enzymatic reaction. Velocity =  P/  t or -  S/  t Product Time.
Paul D. Adams University of Arkansas Mary K. Campbell Shawn O. Farrell Chapter Six The Behavior of Proteins:
The Michaelis-Menton Model For non-allosteric enzymes, the most widely used kinetic model is based upon work done by Leonor Michaelis and Maud Menton For.
Enzyme Kinetics Chapter 6. Kinetics Study of rxn rates, changes with changes in experimental conditions Simplest rxn: S  P –Rate meas’d by V = velocity.
Enzyme Kinetics.
ENZYMES A protein with catalytic properties due to its power of specific activation.
Enzyme Kinetics Velocity (V) = k [S]
Enzyme Kinetics I 10/15/2009. Enzyme Kinetics Rates of Enzyme Reactions Thermodynamics says I know the difference between state 1 and state 2 and  G.
Rmax and Km (26.4) Constants from Michaelis-Menten equation give insight into qualitative and quantitative aspects of enzyme kinetics Indicate if enzyme.
R max and K m (26.4) Constants from Michaelis-Menten equation give insight into qualitative and quantitative aspects of enzyme kinetics Constants – Indicate.
Biochemistry: A Short Course Third Edition CHAPTER 7 Kinetics and Regulation © 2015 W. H. Freeman and Company Tymoczko Berg Stryer.
Enzymes Biological Catalysts. Activation Energy Why don’t thermodynamically favorable reactions occur without the aid of enzymes?
ENZYMES 2.
Enzyme Kinetics and Inhibition Stryer Short Course Chapter 7.
Enzyme Kinetics Sadia Sayed. What is Enzyme Kinetics?  Kinetics is the study of the rates at which chemical reactions occur  Then what is Enzyme Kinetics?
Lecture 5:Enzymes Ahmad Razali Ishak
Key topics about enzyme function:
Enzyme kinetics & Michaelis-Menten Equation Abdul Rehman Abbasi MSc Chemistry Semester – I Preston University Isb.
Enzyme Kinetics Bwahahahaha!
ENZYMES: KINETICS, INHIBITION, REGULATION
Enzymes.
Enzyme Kinetics provides Insight into
ENZYME INHIBITION.
Chapter 6 CHM 341 Fall 2016 Suroviec.
The Vmax and Km values of a certain enzyme can be measured by the double reciprocal plot (i.e., the Lineweaver-Burk plot).
13 part 2 Enzyme kinetics 酵素動力學 溫鳳君0993b303 姜喆云0993b039.
بسم الله الرحمن الرحيم.
Michaelis-Menten Kinetics
Lecture 8 Enzyme Kinetics
Enzyme Kinetics Velocity (V) = k [S]
Presentation transcript:

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Enzyme Kinetics

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Enzymes Enzymes endow cells with the remarkable capacity to exert kinetic control over thermodynamic potentiality Enzymes are the agents of metabolic function

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Catalytic Power Enzymes can accelerate reactions as much as over uncatalyzed rates!

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Specificity Enzymes selectively recognize proper substrates over other molecules Enzymes produce products in very high yields - often much greater than 95% Specificity is controlled by structure - the unique fit of substrate with enzyme controls the selectivity for substrate and the product yield

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company The Transition State Understand the difference between  G and  G ‡ The overall free energy change for a reaction is related to the equilibrium constant The free energy of activation for a reaction is related to the rate constant It is extremely important to appreciate this distinction!

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company What Enzymes Do.... Enzymes accelerate reactions by lowering the free energy of activation by binding the transition state of the reaction better than the substrate

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Enzyme Kinetics Several terms to know! rate or velocity rate constant rate law order of a reaction

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company The Michaelis-Menten Equation You should be able to derive this! Louis Michaelis and Maude Menten's theory It assumes the formation of an enzyme- substrate complex It assumes that the ES complex is in rapid equilibrium with free enzyme Breakdown of ES to form products is assumed to be slower than 1) formation of ES and 2) breakdown of ES to re-form E and S

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company The dual nature of the Michaelis-Menten equation Combination of 0-order and 1st-order kinetics The Michaelis-Menten equation describes a rectangular hyperbolic dependence of v on S ! When S is low, the equation for rate is 1st order in S When S is high, the equation for rate is 0- order in S

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Understanding K m The "kinetic activator constant" K m is a constant K m is a constant derived from rate constants K m is, under true Michaelis-Menten conditions, an estimate of the dissociation constant of E from S Small K m means tight binding; high K m means weak binding

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Understanding V max The theoretical maximal velocity V max is a constant V max is the theoretical maximal rate of the reaction - but it is NEVER achieved in reality To reach V max would require that ALL enzyme molecules are tightly bound with substrate V max is asymptotically approached as substrate is increased

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company The turnover number A measure of catalytic activity k cat, the turnover number, is the number of substrate molecules converted to product per enzyme molecule per unit of time, when E is saturated with substrate. If the M-M model fits, k 2 = k cat = V max /E t Values of k cat range from less than 1/sec to many millions per sec

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company The catalytic efficiency Name for k cat /K m An estimate of "how perfect" the enzyme is k cat /K m is an apparent second-order rate constant It measures how the enzyme performs when S is low The upper limit for k cat /K m is the diffusion limit - the rate at which E and S diffuse together

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Enzyme Inhibitors Reversible versus Irreversible Reversible inhibitors interact with an enzyme via noncovalent associations Irreversible inhibitors interact with an enzyme via covalent associations

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Classes of Inhibition Competitive inhibition - inhibitor (I) binds only to E, not to ES Noncompetitive inhibition - inhibitor (I) binds either to E and/or to ES

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Competitive inhibition

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Non-competitive inhibition