Right Triangle Trigonometry Solving Right Triangles Prepared by Title V Staff: Daniel Judge, Instructor Ken Saita, Program Specialist East Los Angeles College EXIT BACKNEXT Click one of the buttons below or press the enter key © 2002 East Los Angeles College. All rights reserved.
Consider a Right Triangle. Note – a is the leg opposite c is the leg opposite our right angle b is the leg adjacent to EXIT BACKNEXT
So that we have the following right triangle. EXIT BACKNEXT
The six trigonometric ratios are defined as follows: EXIT BACKNEXT
What are the six trigonometric ratios for ? Note – We need the length of one of the legs of our right triangle. EXIT BACKNEXT
Use the Pythagorean Theorem... EXIT BACKNEXT
For this triangle we get: hyp adj opp EXIT BACKNEXT
Notice we have another angle at . EXIT BACKNEXT
We can obtain the six trigonometric ratios for , HYP opp adj hyp EXIT BACKNEXT
Together the model looks as follows. HYP adj / opp opp / adj hyp With + = 90° EXIT BACKNEXT
Recall the 45º - 45º - 90º Special Triangle. What are the six trigonometric ratios for 45º? EXIT BACKNEXT
hyp opp 45º adj 45º EXIT BACKNEXT
hyp opp 45º adj 45º EXIT BACKNEXT
Recall the 30º - 60º - 90º special triangle. What are the six trigonometric ratios for 30 º ? What are the six trigonometric ratios for 60 º ? EXIT BACKNEXT
For 60º hyp opp 60º / adj 30º opp 30º / adj 60º EXIT BACKNEXT
Thus, hyp opp 60º / adj 30º opp 30º / adj 60º EXIT BACKNEXT
For 30º hyp opp 60º / adj 30º opp 30º / adj 60º EXIT BACKNEXT
Thus, hyp opp 60º / adj 30º opp 30º / adj 60º EXIT BACKNEXT
Summary sin( )cos( )tan( ) 30º 45º1 60º EXIT BACKNEXT
End of Right Triangle Trigonometry Title V East Los Angeles College 1301 Avenida Cesar Chavez Monterey Park, CA Phone: (323) Us At: Our Website: EXIT BACKNEXT