Many different acceleration mechanisms: Fermi 1, Fermi 2, shear,... (Fermi acceleration at shock: most standard, nice powerlaw, few free parameters) main.

Slides:



Advertisements
Similar presentations
Dimitrios Giannios Purdue Workshop, May 12th 2014 Sironi L. and Giannios D. 2014, ApJ in press, arXiv: Is the IGM heated by TeV blazars?
Advertisements

Understanding the prompt emission of GRBs after Fermi Tsvi Piran Hebrew University, Jerusalem (E. Nakar, P. Kumar, R. Sari, Y. Fan, Y. Zou, F. Genet, D.
The Galactic diffuse emission Sabrina Casanova, MPIK Heidelberg XXth RENCONTRES DE BLOIS 18th - 23rd May 2008, Blois.
Modeling the SED and variability of 3C66A in 2003/2004 Presented By Manasvita Joshi Ohio University, Athens, OH ISCRA, Erice, Italy 2006.
THE ORIGIN OF COSMIC RAYS Implications from and for X and γ-Ray Astronomy Pasquale Blasi INAF/Osservatorio Astrofisico di Arcetri, Firenze.
Upper Limit on the Cosmological  - Ray Background Yoshiyuki Inoue (Stanford) Kunihito Ioka (KEK) 1.
Electromagnetic instabilities and Fermi acceleration at ultra-relativistic shock waves Electromagnetic instabilities and Fermi acceleration at ultra-relativistic.
Magnetic-field production by cosmic rays drifting upstream of SNR shocks Martin Pohl, ISU with Tom Stroman, ISU, Jacek Niemiec, PAN.
Pasquale Blasi INAF/Arcetri Astrophysical Observatory 4th School on Cosmic Rays and Astrophysics UFABC - Santo André - São Paulo – Brazil.
Gamma-Ray Bursts (GRBs) and collisionless shocks Ehud Nakar Krakow Oct. 6, 2008.
Relativistic photon mediated shocks Amir Levinson Tel Aviv University With Omer Bromberg (PRL 2008)
07/05/2003 Valencia1 The Ultra-High Energy Cosmic Rays Introduction Data Acceleration and propagation Numerical Simulations (Results) Conclusions Isola.
Spectral analysis of non-thermal filaments in Cas A Miguel Araya D. Lomiashvili, C. Chang, M. Lyutikov, W. Cui Department of Physics, Purdue University.
Collisionless shocks in Gamma Ray Bursts Current results and future perspectives. Århus, September 2005 Troels Haugbølle Dark Cosmology.
Cosmic Rays Discovery of cosmic rays Local measurements Gamma-ray sky (and radio sky) Origin of cosmic rays.
Zhang Ningxiao.  Emission of Tycho from Radio to γ-ray.  The γ-ray is mainly accelerated from hadronic processes.
1 Tuning in to Nature’s Tevatrons Stella Bradbury, University of Leeds T e V  -ray Astronomy the atmospheric Cherenkov technique the Whipple 10m telescope.
Magnetic Fields in Supernova Remnants and Pulsar-Wind Nebulae 2013/12/18 Speaker : Yu-Hsun Cheng Professor: Yosuke Mizuno.
Shock acceleration of cosmic rays Tony Bell Imperial College, London.
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
Interaction among cosmic Rays, waves and large scale turbulence Interaction among cosmic Rays, waves and large scale turbulence Huirong Yan Kavli Institute.
Gamma-ray Astronomy of XXI Century 100 MeV – 10 TeV.
High energy emission from jets – what can we learn? Amir Levinson, Tel Aviv University Levinson 2006 (IJMPA, review)
Diffusive shock acceleration: an introduction
Relativistic Collisionless Shocks in the Unmagnetized Limit
First It’s Hot & Then It’s Not Extremely Fast Acceleration of Cosmic Rays In A Supernova Remnant Peter Mendygral Journal Club November 1, 2007.
Diffusive Shock Acceleration in Astrophysics Athina Meli Physics Department, National University of Athens RICAP’07, June, Rome.
Particle Acceleration The observation of high-energy  -rays from space implies that particles must be accelerated to very high energies (up to ~
Simulation of relativistic shocks and associated radiation from turbulent magnetic fields 2010 Fermi Symposium 9 – 12 May 2011 Rome Italy K.-I. Nishikawa.
1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.
Lepton - Photon 01 Francis Halzen the sky the sky > 10 GeV photon energy < cm wavelength > 10 8 TeV particles exist > 10 8 TeV particles exist Fly’s.
1 NATURE OF KNEES AND ANKLE V.S. Berezinsky INFN, Laboratori Nazionali del Gran Sasso.
Gamma-Ray Bursts: Open Questions and Looking Forward Ehud Nakar Tel-Aviv University 2009 Fermi Symposium Nov. 3, 2009.
Gamma-ray emission from molecular clouds: a probe of cosmic ray origin and propagation Sabrina Casanova Ruhr Universitaet Bochum & MPIK Heidelberg, Germany.
Introduction to the High Energy Astrophysics Introductory lecture.
260404Astroparticle Physics1 Astroparticle Physics Key Issues Jan Kuijpers Dep. of Astrophysics/ HEFIN University of Nijmegen.
Radiation spectra from relativistic electrons moving in turbulent magnetic fields Yuto Teraki & Fumio Takahara Theoretical Astrophysics Group Osaka Univ.,
Newly Born Pulsars as Sources of High and Ultrahigh Energy Cosmic Rays Ke Fang University of Chicago ISCRA - Jul 9, KF, Kotera, Olinto 2012, ApJ,
Gamma-ray Bursts and Particle Acceleration Katsuaki Asano (Tokyo Institute of Technology) S.Inoue ( NAOJ ), P.Meszaros ( PSU )
The Universe >100 MeV Brenda Dingus Los Alamos National Laboratory.
High-energy radiation from gamma-ray bursts Zigao Dai Nanjing University Xiamen, August 2011.
PHY418 Particle Astrophysics
A Pulsar Wind Nebula Origin for Luminous TeV Source HESS J Joseph Gelfand (NYUAD / CCPP) Eric Gotthelf, Jules Halpern (Columbia University), Dean.
Cosmic Rays High Energy Astrophysics
November 1 - 3, nd East Asia Numerical Astrophysics Meeting KASI, Korea Shock Waves and Cosmic Rays in the Large Scale Structure of the Universe.
Propagation and Composition of Ultra High Energy Cosmic Rays
Gamma-Ray Burst Working Group Co-conveners: Abe Falcone, Penn State, David A. Williams, UCSC,
Gamma-Ray Bursts and unmagnetized relativistic collisionless shocks Ehud Nakar Caltech.
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
VHE  -ray Emission From Nearby FR I Radio Galaxies M. Ostrowski 1 & L. Stawarz 1,2 1 Astronomical Observatory, Jagiellonian University 2 Landessternwarte.
The non-thermal broadband spectral energy distribution of radio galaxies Gustavo E. Romero Instituto Argentino de Radio Astronomía (IAR-CCT La Plata CONICET)
Don Ellison, NCSU, Future HE-Observatory, SNR/CR Working Group Magnetic Field Amplification in Astrophysical Shocks 1)There is convincing evidence for.
COSMIC RAYS. At the Earth’ Surface We see cascades from CR primaries interacting with the atmosphere. Need to correct for that to understand their astronomical.
Stochastic wake field particle acceleration in Gamma-Ray Bursts Barbiellini G., Longo F. (1), Omodei N. (2), Giulietti D., Tommassini P. (3), Celotti A.
Simulation of relativistic shocks and associated radiation from turbulent magnetic fields 2009 Fermi Symposium 2-5 November 2009 Hyatt Regency Washington,
UHE Cosmic Rays from Local GRBs Armen Atoyan (U.Montreal) collaboration: Charles Dermer (NRL) Stuart Wick (NRL, SMU) Physics at the End of Galactic Cosmic.
Fermi Several Constraints by Fermi Zhuo Li ( 黎卓 ) Department of Astronomy, Peking University Kavli Institute of Astronomy and Astrophysics 23 August, Xiamen.
GLAST Observations of Supernova Remnants and Pulsar Wind Nebulae Bryan Gaensler The University of Sydney / Harvard-Smithsonian Center for Astrophysics.
Diffusive shock acceleration: an introduction
H.E.S.S. Collaboration, A. Abramowski et al. Presented by: Jeroen Maat
Cosmic-ray acceleration by compressive plasma fluctuations in supernova shells Ming Zhang Department of Physics and Space Sciences, Florida Institute.
Thermal electrons in GRB afterglows, or
Photon breeding mechanism in jets and its observational signatures
Gamma Rays from the Radio Galaxy M87
Observation of Pulsars and Plerions with MAGIC
Particle Acceleration in the Universe
Diffusive shock acceleration: an introduction – cont.
Massive star clusters as Sources of Galactic Cosmic Rays (arXiv:1804
A. Uryson Lebedev Physical Institute RAS, Moscow
Presentation transcript:

many different acceleration mechanisms: Fermi 1, Fermi 2, shear,... (Fermi acceleration at shock: most standard, nice powerlaw, few free parameters) main signatures to be determined: E min, E max [ Ã timescale t acc (E) ], spectral slope h ® i, running d ® / d ln E only secondary photon spectra are observed, reconstruction process is difficult and source physics dependent... different ways of addressing this problem: - acceleration physics: idealized source configurations ) calculate t acc (E), ® (E) - data interpretation: most effort on source modelling ( t acc » t L, ® » best fit "Fundamental acceleration processes and CTA" From CTA observations to fundamental acceleration mechanisms... a difficult task: Martin Lemoine - IAP p shock Fermi at mildly relativistic internal shocks

Fermi acceleration Simple view of Fermi acceleration: unshocked upstream shocked downstream v down v sh shock front rest frame test particle approximation: particles get accelerated as they bounce back and forth on magnetic inhomogeneities on both sides of the shock front Modern view of Fermi acceleration: relativistic regime: v sh » c, how well does Fermi acceleration operate? test particle approximation is not a good approximation: cosmic ray energy density/pressure represents a sizeable contribution... ) modification of the shock jump conditions, non-linear Fermi acceleration theory and observations suggest that the coupling between accelerated particles and e.m. waves is of fundamental importance, for both non-relativistic and relativistic shocks Implications: there exists an intimate link between the physics of (relativistic or not) collisionless shock waves, accelerations mechanisms, source physics, hence observational data at VHE a new numerical tool to probe acceleration physics: Particle-In-Cell (PIC) simulations... astrophysical objects probe different physical conditions... SNR: non-relativistic, weakly magnetised IGM shock waves: non-relativistic, unmagnetized ? GRB: moderately to ultra-relativistic, weakly magnetised? PWNe: ultra-relativistic, strongly magnetised?

Acceleration at IGM shock waves and magnetic fields IGM shock waves: acceleration can proceed if the unshocked medium is magnetized: gamma-ray observations would allow to measure this unshocked (primeval?) magnetic field and/or constrain the amplication mechanisms... Keshet et al. 03 log 10 (J/J 0 ) (>10 GeV) J 0 ' cm -2 s -1 sr -1 above 1GeV above 10 GeV cluster, 16 £ 16 ±, ±µ =0.2 ± filament, 16 £ 16 ±, ±µ =0.4 ± cluster, 16 £ 16 ±, ±µ =0.4 ± log 10 (J/J 0 ) (>1 GeV) J 0 ' cm -2 s -1 sr -1

Relativistic Fermi acceleration Limits: the ambient magnetic field inhibits Fermi acceleration: B ? down » ¡ sh B ? up, therefore B is mostly perpendicular, particle is trapped on B line and advected away from the shock far in the shocked region unshockedshocked c/3 c B ) Fermi acceleration requires energy transfer between shock and magnetic field accelerated particles are the likely agent of transfer via e.m. beam-plasma instabilities Consequences: if the ambient magnetic field is too strong, accelerated particles cannot propagate far enough into the unshocked plasma (penetration length » r L / ¡ sh 3 !), hence instabilities cannot grow, hence Fermi acceleration is inhibited: ) Fermi acceleration should not operate at strongly magnetized PWNe terminal shocks, in magnetized GRB external shocks (?)... much to be learned from VHE observations... (some) Open questions: spectral slope, running and maximal energy still unknown... Fermi acceleration at moderately relativistic shock waves (ex. GRB internal shocks)... time dependence of the shock structure and Fermi acceleration... ) particles do not radiate via synchrotron, but via jitter radiation on small scale e.m. fluctuations shock front rest frame

Relativistic Fermi acceleration: an example Observations of GRB C: Fermi LAT detection of high energy emission >1 GeV, delayed by several seconds with respect to lower energy energy time various interpretations, among which: o Wang et al. 09: inverse Compton, E ° as high as 70GeV implies t acc ' t L and offers a lower limit on unshocked magnetic field o Razzaque et al. 09: VHE emission is proton synchrotron radiation, delay » proton cooling time; implies acceleration of p to & eV, but requires huge magnetic energy content

Acceleration mechanism vs energy Cosmic ray all-sky all-particle spectrum (x E 3 ): very small flux at UHE: » 1/km 2 /century at eV sources: GRBs, blazars?? knee second knee ankle Galactic supernovae remnants...Sources of ultra-high energy cosmic rays are the most powerful accelerators known in Nature... Main questions: which source, which acceleration mechanism to reach E » eV? are secondaries (gamma-rays/ neutrinos) expected...?

Secondaries of ultra-high energy cosmic ray sources Assumptions: sources of UHE protons and nuclei embedded in magnetized clusters Kotera et al. 09 ) detection of gamma-rays from UHE sources in galaxy clusters in unlikely even for CTA, even with optimistic assumptions Gabici & Aharonian 05 suggest to detect the >GeV synchrotron light of eV e + e - pairs produced by UHE protons interacting with the CMB: unlikely for 'modern' source luminosities... secondaries emitted in the source itself: also unlikely for reasons of temporal coincidences between arrival of UHE protons and VHE gamma-rays (magnetic fields...) Other possibilities: