16. Magnetic brakes ”When a strong magnet falls down a non ferromagnetic metal tube, it will experience a retarding force. Investigate the phenomenon.”

Slides:



Advertisements
Similar presentations
Numbers Treasure Hunt Following each question, click on the answer. If correct, the next page will load with a graphic first – these can be used to check.
Advertisements

1 ZonicBook/618EZ-Analyst Resonance Testing & Data Recording.
AP STUDY SESSION 2.
1
Feichter_DPG-SYKL03_Bild-01. Feichter_DPG-SYKL03_Bild-02.
Chapter 3 Demand and Behavior in Markets. Copyright © 2001 Addison Wesley LongmanSlide 3- 2 Figure 3.1 Optimal Consumption Bundle.
© 2008 Pearson Addison Wesley. All rights reserved Chapter Seven Costs.
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Chapter 1 The Study of Body Function Image PowerPoint
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 6 Author: Julia Richards and R. Scott Hawley.
Author: Julia Richards and R. Scott Hawley
1 Copyright © 2013 Elsevier Inc. All rights reserved. Appendix 01.
Properties Use, share, or modify this drill on mathematic properties. There is too much material for a single class, so you’ll have to select for your.
Objectives: Generate and describe sequences. Vocabulary:
UNITED NATIONS Shipment Details Report – January 2006.
RXQ Customer Enrollment Using a Registration Agent (RA) Process Flow Diagram (Move-In) Customer Supplier Customer authorizes Enrollment ( )
1 RA I Sub-Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Casablanca, Morocco, 20 – 22 December 2005 Status of observing programmes in RA I.
Properties of Real Numbers CommutativeAssociativeDistributive Identity + × Inverse + ×
Custom Statutory Programs Chapter 3. Customary Statutory Programs and Titles 3-2 Objectives Add Local Statutory Programs Create Customer Application For.
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt BlendsDigraphsShort.
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
1 Click here to End Presentation Software: Installation and Updates Internet Download CD release NACIS Updates.
REVIEW: Arthropod ID. 1. Name the subphylum. 2. Name the subphylum. 3. Name the order.

Break Time Remaining 10:00.
Turing Machines.
Table 12.1: Cash Flows to a Cash and Carry Trading Strategy.
PP Test Review Sections 6-1 to 6-6
CME12, – Rzeszów, Poland Gergely Wintsche Generalization through problem solving Gergely Wintsche Mathematics Teaching and Didactic Center.
Magnetic field.
EU market situation for eggs and poultry Management Committee 20 October 2011.
Bright Futures Guidelines Priorities and Screening Tables
EIS Bridge Tool and Staging Tables September 1, 2009 Instructor: Way Poteat Slide: 1.
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt Vocabulary.
Bellwork Do the following problem on a ½ sheet of paper and turn in.
2 |SharePoint Saturday New York City
The challenge ahead: Ocean Predictions in the Arctic Region Lars Petter Røed * Presented at the OPNet Workshop May 2008, Geilo, Norway * Also affiliated.
Exarte Bezoek aan de Mediacampus Bachelor in de grafische en digitale media April 2014.
VOORBLAD.
Copyright © 2012, Elsevier Inc. All rights Reserved. 1 Chapter 7 Modeling Structure with Blocks.
1 RA III - Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Buenos Aires, Argentina, 25 – 27 October 2006 Status of observing programmes in RA.
Factor P 16 8(8-5ab) 4(d² + 4) 3rs(2r – s) 15cd(1 + 2cd) 8(4a² + 3b²)
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
1..
CONTROL VISION Set-up. Step 1 Step 2 Step 3 Step 5 Step 4.
© 2012 National Heart Foundation of Australia. Slide 2.
Adding Up In Chunks.
Understanding Generalist Practice, 5e, Kirst-Ashman/Hull
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt Synthetic.
1 Motion and Manipulation Configuration Space. Outline Motion Planning Configuration Space and Free Space Free Space Structure and Complexity.
Model and Relationships 6 M 1 M M M M M M M M M M M M M M M M
1 Using one or more of your senses to gather information.
Subtraction: Adding UP
1 hi at no doifpi me be go we of at be do go hi if me no of pi we Inorder Traversal Inorder traversal. n Visit the left subtree. n Visit the node. n Visit.
Analyzing Genes and Genomes
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
Essential Cell Biology
Converting a Fraction to %
Clock will move after 1 minute
Intracellular Compartments and Transport
PSSA Preparation.
Essential Cell Biology
Immunobiology: The Immune System in Health & Disease Sixth Edition
Physics for Scientists & Engineers, 3rd Edition
1 Chapter 13 Nuclear Magnetic Resonance Spectroscopy.
Energy Generation in Mitochondria and Chlorplasts
Select a time to count down from the clock above
Murach’s OS/390 and z/OS JCLChapter 16, Slide 1 © 2002, Mike Murach & Associates, Inc.
Presentation transcript:

16. Magnetic brakes ”When a strong magnet falls down a non ferromagnetic metal tube, it will experience a retarding force. Investigate the phenomenon.”

Qualitative explanation Outline Qualitative explanation Quantitaive explanation Force modeling Dipole case Equation of motion Apparatus and experimental methods Measurement of magnetic flux change Measurement of magnet velocity Comparison of experimental data and theory Dependence of terminal velocity on magnet size Terminal velocity for dipole Dependence of terminal velocity on material conductivity Equation of motion

What causes the force? Magnet falls down under the influence of gravity Magnetic flux is changing in space Current is induced in the tube Currents act on magnet by force that reduces the speed of magnetic flux change (reducing the magnet speed) z 𝑚 𝑭 𝒎 In the middle there is no induced current Direction of induced currents 𝑣 𝑚 – magnetic moment 𝑣 −velocity of a magnet

Force According to Newton III. law: 𝐹 𝑚 =− 𝐹 𝑐 𝐹 𝑚 =− 𝐹 𝑐 Because we know what is the force on a current loop we can write 𝑑 𝐹 𝑚 =−𝑑𝐼 𝑙 × 𝐵 ∆ρ ρm 𝐿=𝑁∆𝑧 z   F G d𝑧 B Bz B Bz Bρ Fρ (Bz) Fρ (Bz) Bρ Fz (Bρ) Fz (Bρ) 𝐹 𝑚 − force on magnet 𝐹 𝑐 −force on current Δ𝜌−tickness of the tube dz – lenght of a loop 𝜌 𝑚 −mean radius of the pipe Assumption: no skin effect 𝛿=38.3 𝑚𝑚>5.5 𝑚𝑚 Cu; 𝑣=0.1𝑚 𝑠 −1 ;Δ𝜌=1 mm

Force Magnetic field component 𝐵 𝜌 is causing the force in 𝑧 direction so the force can be written as 𝒅 𝑭 𝒎 =−𝒅𝑰∙𝟐𝝅 𝝆 𝒎 ∙ 𝑩 𝝆 Using Maxwell equation 𝛻 𝐵 =0 we derive expresion for 𝐵 𝜌 𝑑𝐼= 𝜎Δ𝜌𝜀 2𝜋 𝜌 𝑚 𝑑𝑧 𝜀= 𝑑𝜙 𝑑𝑧 𝑣 𝑩 𝝆 =− 𝟏 𝟐𝝅 𝛒 𝒎 𝒅𝝓 𝒅𝒛 𝒅𝑰= 𝜟𝝆𝝈𝒗 𝟐𝝅 𝝆 𝒎 𝒅𝝓 𝒅𝒛 𝒅𝒛 Bz Bρ Fz (Bρ) Fρ (Bz) z 𝑑𝜙 𝑑𝑧 − change of magnetic flux in z direction ε – induced voltage σ – material conductivity R – restistance of the ring

Force After rearranging the term we obtain total force on a magnet caused by induced current 𝑭 𝒎 = 𝝈𝚫𝛒𝒗 𝟐𝝅 𝛒 𝒎 𝒛𝟏 𝒛𝟐 𝒅𝝓 𝒅𝒛 𝟐 𝒅𝒛 z1, z2 – coordinates of the tube edges

Equation of motion II. Newton law for magnet states 𝑚 𝑑𝑣 𝑑𝑡 =𝑚𝑔− 𝐹 𝑚 After solving for 𝑣 we obtain (𝑣 0 =0) 𝑣 𝑡 =𝜏𝑔 1− 𝑒 − 𝑡 𝜏 Substitution: 𝜏= 2𝜋 𝜌 𝑚 𝑚 𝑚𝑎𝑔 𝜎Δ𝜌 1 𝒛𝟏 𝒛𝟐 𝒅𝝓 𝒅𝒛 𝟐 𝒅𝒛 Function is in form of exponential decay Terminal velocity can be expressed as 𝑣=𝜏𝑔

Determing magnetic flux change Because 𝒅𝝓 𝒅𝒛 can be difficult to calculate we decided to experimentaly determine it 𝐹=NI∙2𝜋𝜌∙ 𝐵 𝜌 𝐹=𝑁𝐼∙ 𝑑𝜙 𝑑𝑧   Wooden cube (in place to eliminate magnets impact on the scale) Stand Screw for vertical dislacement (0.01 mm) Coil same diameter as tube Scale Magnet Measured by scale 𝒅𝝓 𝒅𝒛 = 𝑭 𝑵𝑰 Adjusted on current source I = 1A (DC) Property of coil N = 40

Plastic tube Adjustable stand Coil Neodimium magnets Brass screw Scale Current source Wooden block

Example of obtained data - magnetic flux change 2r = 4 mm h Grid lines ?

Computer controlled power supply Velocity measurement Coil used for releasing magnet Coil used for releasing magnet Computer controlled power supply Detector coils PC Detector coils ADC

Velocity measurement – coils detect passing magnet due to induction: 2r = 4 mm h 𝜀= 𝑑𝜙 𝑑𝑧 𝑣 Copper 3 solenoids 𝜌=5.5 𝑚𝑚 Δ𝜌=1 𝑚𝑚

Dependence of terminal velocity on cylindrical magnets height – Cu and Al Theoretical values numericaly calculated from: 𝒗= 𝟐𝝅 𝝆 𝒎 𝒎 𝒎 𝒈 𝚫𝝆𝝈 𝒌(𝒉) Substitution: 𝑘(ℎ)= −∞ ∞ 𝑑𝜙 𝑑𝑧 2 𝑑𝑧 No free parameters 4 mm h

Dipole Dipole magnetic field in z direction (measured from the magnet): 𝐵 𝑧 𝑧,𝜌 = 𝜇 0 𝑚 4𝜋 2 𝑧 2 − 𝜌 𝑚 2 𝑧 2 + 𝜌 𝑚 2 5 If the magnet is far enough from the edges of the tube we can write 𝑭 𝒎 = 𝟒𝟓 (𝝁 𝟎 𝑴𝑽)𝟐𝝈𝚫𝛒∙𝒗 𝟏𝟎𝟐𝟒𝝅 𝝆 𝒎 𝟒

Terminal velocity - dipole Spherical magnet – radius 2.5 mm Aluminium tube 𝜌=5 𝑚𝑚, Δ𝜌=1 𝑚𝑚 Theoretical prediction Experimental result 0.458 𝑚 𝑠 −1 0.452±0.012 𝑚 𝑠 −1 𝒗 𝒕 = 𝟐𝟓𝟔𝒅𝒈 𝟏𝟓𝝅𝝈 𝝁 𝟎 𝑴 𝟐 ∙ 𝝆 𝒎 𝒓 𝟑 𝝆 𝒎 𝜟𝝆 d – magnet’s density r – radius of a magnet vt – theoretical velocity

Velocity - conductivity Copper tube coled down to 77K in insulating box with liquid N2 As tube warms up magnet is released and velocity measured Magnet was constantly kept on liquid nitrogen temperature ≈ 77K (constant magnetization 𝑀 𝑐𝑜𝑙𝑑 =1.13 𝑀 𝑤𝑎𝑟𝑚 ) Conductivity measured directly - resistance of wire attached to tube Insulating box Coil used for releasing magnet Detector coils Copper wire Styrofoam

Dependence of final speed on material conductivity 𝒗∝ 𝟏 𝝈 𝑹∝ 𝟏 𝝈 𝑀 𝑐𝑜𝑙𝑑 =1.13 𝑀 𝑤𝑎𝑟𝑚

Dependence of velocity on distance traveled Theoretical values calculated numericaly from 𝑣 𝑑𝑣 𝑑𝑧 + 𝑣 𝜏𝑚 −𝑔=0 Initial speed determined experimentally System of cylindrical magnet ( ℎ=3 𝑚𝑚 ) and weight Velocity experimentaly determined by using 𝜀= 𝑑𝜙 𝑑𝑧 𝑣 relation

Conclusion Theoretical model developed Experiment Quantitaive No free parameters Very good correlation with experiment Assumptions No skin effect Constant direction and magnitude of magnetization of magnet Rotational symmetry of the tube Experiment Parameters changed Size and shape of magnet Conductivity of material

Reference Valery S Cherkassky, Boris A Knyazev, Igor A Kotelnikov, Alexander A Tyutm; Eur. J. Phys.; Breaking of magnetic dipole moving through whole and cut conducting pipes Edward M. Purcell; Electricity and Magnetism Berkley physics course – volume 2, Second Edition; McGraw-Hill book company

Magnetic brakes Croatian team Domagoj Pluscec IYPT 2014 team of Croatia Thank you Reporter: Domagoj Pluščec

Current 𝐼= 𝜀 𝑅 𝜀=− 𝑑𝜙 𝑑𝑡 =− 𝑑𝜙 𝑑𝑡 𝑑 𝑧 0 𝑑 𝑧 0 = 𝑑𝜙 𝑑𝑧 𝑣 𝜀=− 𝑑𝜙 𝑑𝑡 =− 𝑑𝜙 𝑑𝑡 𝑑 𝑧 0 𝑑 𝑧 0 = 𝑑𝜙 𝑑𝑧 𝑣 𝑅= 1 𝜎 𝑙 𝐴 = 1 𝜎 2𝜋 𝜌 𝑚 Δ𝜌∙𝑑𝑧 𝜀= 𝑑𝜙 𝑑𝑧 𝑣 v – magnets speed 𝑑𝜙 𝑑𝑡 − time change of magnetic flux ε – induced voltage σ – material conductivity l – ring perimeter A – area of ring cross section R – restistance of the ring 𝑧 0 - magnets position 𝑑𝜙 𝑑𝑡 - can be expresed as space change because magnetic flux around the magnet doesn’t depend on time 𝒅𝑰= 𝜟𝝆𝝈𝒗 𝟐𝝅 𝝆 𝒎 𝒅𝝓 𝒅𝒛 𝒅𝒛

Determing Bρ Maxwell equation 𝛻 𝐵 =0 (magnetic field lines are closed curves) 𝜙1 𝜙2 𝜙 1 = 𝜙 2 + 𝜙 3 𝜙 3 =−𝑑𝜙 𝜙 3 =2𝜋 𝜌 𝑚 𝐵 𝜌 𝑑𝑧 𝜙3 𝑩 𝝆 =− 𝟏 𝟐𝝅 𝛒 𝒎 𝒅𝝓 𝒅𝒛 𝜙 – magnetic flux Schematic representation of the magnetic flux through a closed surface (disc shape)

𝐹 𝑔 = 𝐹 𝑚 𝑚 𝑚 𝑔= Δ𝜌𝜎 𝑣 0 2𝜋 𝜌 𝑚 −∞ ∞ 𝑑𝜙 𝑑𝑧 2 𝑑𝑧 Terminal velocity Terminal velocity is reached when gravitational force is equal to magnetic force 𝐹 𝑔 = 𝐹 𝑚 𝑚 𝑚 𝑔= Δ𝜌𝜎 𝑣 0 2𝜋 𝜌 𝑚 −∞ ∞ 𝑑𝜙 𝑑𝑧 2 𝑑𝑧 Supstitution 𝑘= −∞ ∞ 𝑑𝜙 𝑑𝑧 2 𝑑𝑧 𝒗 𝟎 = 𝟐𝝅 𝝆 𝒎 𝒎 𝒎 𝒈 𝚫𝝆𝝈𝒌

Assumptions used in derivation of model Tube is rotational symetrical in z direction Thin tube and the magnet is falling with low velocities (model does not take into consideration skin effect) 𝛿= 2 𝜇𝜎𝜔 ≫ 𝜌 𝑚 ; 𝜔~ 𝑣 𝜌 𝑚 We didn’t take into account case in which magnet rotates in such a way that direction of its magnetic moment changes 𝛿=38.3 𝑚𝑚>5.5 𝑚𝑚 Cu; 𝑣=0.1𝑚 𝑠 −1 ;Δ𝜌=1 mm 𝛿 – skin depth 𝜔 – characteristic frequency

Detailed dipole model derivation 1/2 In theoretical modeling part we obtained 𝑭 𝒎𝒂𝒈 = 𝝈𝚫𝛒 𝒗 𝒐 𝟐𝝅 𝛒 𝒎 𝒛𝟏 𝒛𝟐 𝒅𝝓 𝒅𝒛 𝟐 𝒅𝒛 in this equation we need to find 𝑑𝜙 𝑑𝑧 for dipole Magnetic flux trought cross section of tube can be expressed as 𝜙 𝑧 =2𝜋 0 𝜌 𝑚 𝐵 𝑧 𝜌 𝑑𝜌 And by using expresion for a field of dipole in z direction 𝐵 𝑧 𝑧,𝜌 = 𝜇 0 𝑚 4𝜋 2 𝑧 2 − 𝜌 𝑚 2 𝑧 2 + 𝜌 𝑚 2 5 we obtain magnetic flux in z direction

Detailed dipole model derivation 2/2 Magnetic flux in z direction 𝜙 𝑧 = 𝜇 0 𝑚 2 𝜌 𝑚 2 𝑧 2 + 𝜌 𝑚 2 3 2 From that we derive magnetic flux change 𝑑𝜙(𝑧) 𝑑𝑧 =− 3 𝜌 𝑚 𝑧 𝑧 2 + 𝜌 𝑚 2 5 2 By knowing magnetic flux change we can obtain force 𝐹 𝑚𝑎𝑔 = 9 (𝜇 0 𝑚)2𝜎𝛥𝜌∙ 𝜌𝑚 3 ∙𝑣 0 8𝜋 𝑧1 𝑧2 𝑧 2 𝑧 2 + 𝜌 𝑚 2 5 𝑑𝑧 If the magnet is far enough from the edges of the tube we can write 𝑭 𝒎𝒂𝒈 = 𝟒𝟓 (𝝁 𝟎 𝑴𝑽)𝟐𝝈𝚫𝛒 ∙𝒗 𝟎 𝟏𝟎𝟐𝟒𝝅 𝝆 𝒎 𝟒

Equation of motion with initial velocity 𝑚 𝑑𝑣 𝑑𝑡 =𝑚𝑔− 𝐹 𝑚𝑎𝑔 , v 0 = 𝑣 0 After solving for 𝑣 we obtain: 𝑣 𝑡 = 𝑣 0 ∙ 𝑒 − 𝑡 𝜏𝑚 +𝑚𝑔𝜏(1− 𝑒 − 𝑡 𝜏𝑚 ) Supstitution: 𝜏= 2𝜋 𝜌 𝑚 𝑚 𝑚𝑎𝑔 𝜎Δ𝜌 1 𝒛𝟏 𝒛𝟐 𝒅𝝓 𝒅𝒛 𝟐 𝒅𝒛

Terminal velocity derived from energy conservation 𝑃 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑃 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 𝑃 𝑐 = 𝐼 2 𝑅 After substituing terms for current and resistance we obtain 𝑃 𝑐 = Δ𝜌𝜎 𝑣 0 2 2𝜋 𝜌 𝑚 𝑘 𝑃 𝑔 =𝑚𝑔 𝑣 0 𝒗= 𝟐𝝅 𝝆 𝒎 𝒎 𝒎 𝒈 𝚫𝝆𝝈𝒌 Supstitution 𝑘= −∞ ∞ 𝑑𝜙 𝑑𝑧 2 𝑑𝑧

Apparatus properties - tubes Copper Aluminium 𝜌 𝑚 5.5 mm 5 mm Δ𝜌 1 mm 𝜎 5.96∙ 10 7 𝑆 𝑚 −1 3.5∙ 10 7 𝑆 𝑚 −1 𝜇 𝑟 0.999994 1.000022

Apparatus properties - magnets Neodimium magnets Magnetic permeability 𝜇 𝑟 =1.05 Density 𝑑=7.5 𝑔𝑐 𝑚 −3 𝜇 0 𝑀≈1.1𝑇 Cylindrical magnets 𝑚=1.13 𝑔 2𝑟=4𝑚𝑚;ℎ=3𝑚𝑚 Spherical magnets 𝑚=0.50 𝑔 𝑟=2.5 𝑚𝑚

Example of obtained data - force

Determing magnetic flux change 2 𝑘= −∞ ∞ 𝑑𝜙 𝑑𝑧 2 𝑑𝑧

Determing magnetic flux change 3 𝑘= −∞ ∞ 𝑑𝜙 𝑑𝑧 2 𝑑𝑧 Copper tube Function k(a) aproximated by 𝑘 ℎ = 𝑥 2 15.08858+0.28338 on interval [2.81, 27.8] mm

Velocity measurement Coils detect passing magnet due to induction: Aluminium, 2 solenoids 𝜀= 𝑑𝜙 𝑑𝑧 𝑣

Theoretical change of velocity 𝑣 𝑡 =𝜏𝑔 1− 𝑒 − 𝑡 𝜏 Supstitution: 𝜏= 2𝜋 𝜌 𝑚 𝑚 𝑚𝑎𝑔 𝜎Δ𝜌𝑘

Cooling - change of the magnetization of the magnet 𝑣∝ 1 𝑀 2 𝑣 𝑤𝑎𝑟𝑚 𝑣 𝑐𝑜𝑙𝑑 = 𝑀 𝑐 2 𝑀 𝑤 2 𝑀 𝑐 = 𝑀 𝑤 𝑣 𝑤𝑎𝑟𝑚 𝑣 𝑐𝑜𝑙𝑑 For our case: 𝑀 𝑐 =1.13 𝑀 𝑤

Heating of cooled tube

Cooling - change of tube dimesion Change of radius of the pipe 𝐴= 𝐴 0 1+2𝛼Δ𝑇 𝜌 1 𝜌 0 = 1+2𝛼Δ𝑇 𝜌1 𝜌0 = 1+2∙16.6∙ 10 −6 𝐾 −1 ∙216𝐾 =1.00357919468 𝛼 𝑐𝑢 =16.6∙ 10 −6 𝐾 −1

Tube with slit vs tube without slit Without tube Time 2.61±0.05 𝑠 1.68±0.19 𝑠 0.45 𝑠 1 m long aluminium tube 𝜌=1.25 𝑐𝑚 ;Δ𝜌=2 𝑚𝑚 Magnet properties Cylindrical magnet 2𝑟=1 𝑐𝑚;ℎ=1𝑐𝑚

Superconductor

Skin effect 𝐽= 𝐽 𝑠 𝑒 − 𝑑 𝛿