Marcelo Fama Laboratory for Atomic and Surface Physics

Slides:



Advertisements
Similar presentations
Secondary Ion Mass Spectrometry
Advertisements

Max-Planck-Institut für Plasmaphysik EURATOM Assoziation Interaction of nitrogen plasmas with tungsten Klaus Schmid, A. Manhard, Ch. Linsmeier, A. Wiltner,
PWI Modelling Meeting – EFDA C. J. OrtizCulham, Sept. 7 th - 8 th, /8 Defect formation and evolution in W under irradiation Christophe J. Ortiz Laboratorio.
Molecular Dynamics modelling of mixed layer formation K. Nordlund, C. Björkas, N. Juslin, K. Vörtler Accelerator Laboratory, University of Helsinki P.
Max-Planck-Institut für Plasmaphysik EURATOM Assoziation K. Schmid SEWG meeting on mixed materials Parameter studies for the Be-W interaction Klaus Schmid.
X-ray Photoelectron Spectroscopy
Drew Rotunno Mentor: Dr. Itzik Ben-Itzhak, Bethany Joachim Bethany Joachim.
Intermediate Physics for Medicine and Biology Chapter 15: Interaction of Photons and Charged Particles with Matter Professor Yasser M. Kadah Web:
A. Milillo, S. Orsini and A. Mura (INAF/Institute of Space Astrophysics and Planetology) And the SERENA Team.
Cross Sections for Positrons Colliding with H, H 2, He Department of Physics National Tsing Hua University G.T. Chen 2007/6/12.
Beam Composition for Biology
G. Hobler, G. Otto, D. Kovac L. Palmetshofer1, K. Mayerhofer², K
COSIRES2004 MD Simulation of Surface Smoothing due to Cluster Impact: Estimation of Radiation Damage T.Muramoto, K.Itabasi and Y.Yamamura Okayama University.
Program Degrad.1.0 Auger cascade model for electron thermalisation in gas mixtures produced by photons or particles in electric and magnetic fields S.F.Biagi.
Plasma-induced Sputtering & Heating of Titan’s Atmosphere R. E. Johnson & O.J. Tucker Goal Understand role of the plasma in the evolution of Titan’s atmosphere.
NE Introduction to Nuclear Science Spring 2012
Ion Beam Analysis techniques:
Analysis of Mercury’s X-ray fluorescence M. Laurenza, M. Storini and A. Gardini IFSI-INAF, Via del Fosso del Cavaliere, 100, Rome 00133, Italy Joint SERENA.
1 5 – 6 May 2008 IMW MeetingPARIS Observations (new) and Comparison with one (ours) Exospheric Model F. Leblanc Service d'Aéronomie du CNRS/IPSL.
1 EFFECTS OF CARBON REDEPOSITION ON TUNGSTEN UNDER HIGH-FLUX, LOW ENERGY Ar ION IRRADITAION AT ELEVATED TEMPERATURE Lithuanian Energy Institute, Lithuania.
The removal of surface atoms due to energetic particle bombardment
Emre Ertuğrul Emin Şahin Seçkin Gökçe KMU 396 Material Science and Technology.
Model of the gamma ray- induced out-gassing in the nn-experiment at YAGUAR B. Crawford for DIANNA May 26, 2009.
XPS and SIMS MSN 506 Notes.
Measuring ultra-shallow junction Jialin Zhao. Resistivity and Sheet resistance IRS roadmap 2003: 10 nm junction with sheet resistance 500 Ω/sq Electrical.
1 Particle-In-Cell Monte Carlo simulations of a radiation driven plasma Marc van der Velden, Wouter Brok, Vadim Banine, Joost van der Mullen, Gerrit Kroesen.
Progress Report on Chamber Dynamics and Clearing Farrokh Najmabadi, Rene Raffray, Mark S. Tillack, John Pulsifer, Zoran Dragovlovic (UCSD) Ahmed Hassanein.
CMP Seminar MSU 10/18/ What makes Surface Science “surface” science ? R. J. Smith Physics Department, Montana State Univ. Work supported by NSF.
Electronic Excitation in Atomic Collision Cascades COSIRES 2004, Helsinki C. Staudt Andreas Duvenbeck Zdenek SroubekFilip Sroubek Andreas Wucher Barbara.
November 2006 MERCURY OBSERVATIONS - JUNE 2006 DATA REVIEW MEETING Review of Physical Processes and Modeling Approaches "A summary of uncertain/debated.
VORPAL for Simulating RF Breakdown Kevin Paul VORPAL is a massively-parallel, fully electromagnetic particle- in-cell (PIC) code, originally.
ECE/ChE 4752: Microelectronics Processing Laboratory
PC4250 Secondary Ion Mass Spectrometry (SIMS). What is SIMS? SIMS is a surface analysis technique used to characterize the surface and sub-surface region.
Centre de Toulouse Radiation interaction with matter 1.
Nuclear Tracks Sup. P.J.Apel 4/4/  A solid-state nuclear track detector or SSNTD (also known as an etched track detector or a dielectric track.
Measurement and modeling of hydrogenic retention in molybdenum with the DIONISOS experiment G.M. Wright University of Wisconsin-Madison, FOM – Institute.
Fragmentation mechanisms for Methane induced by electron impact
Advanced Analytical Chemistry – CHM 6157® Y. CAIFlorida International University Updated on 9/28/2006Chapter 6Electron Spectroscopy Chapter 6 Electron.
NE Introduction to Nuclear Science Spring 2012 Classroom Session 7: Radiation Interaction with Matter.
Plasma diagnostics using spectroscopic techniques
Europa’s exosphere generation C. Plainaki, A. Milillo, A. Mura, S. Orsini Isituto di Fisica dello Spazio Interplanetario, Rome, ITALY 2nd SERENA-HEWG Meeting,
International Colloquium and Workshop “Ganymede lander: science goals and experiments” Space Research Institute (IKI), Moscow, Russia 5-7 March 2013 Chemistry.
Introduction to Plasma- Surface Interactions Lecture 3 Atomic and Molecular Processes.
Sputter deposition.
Synergism in magnetosphere- exosphere-ice interactions enhances gas trapping and radiation chemistry Raúl A. Baragiola University of Virginia, Charlottesville,
Classical Molecular Dynamics CEC, Inha University Chi-Ok Hwang.
Radiation damage calculation in PHITS
Edge-SOL Plasma Transport Simulation for the KSTAR
Secondary Ion Mass Spectrometry A look at SIMS and Surface Analysis.
Basics of Ion Beam Analysis
Abel Blazevic GSI Plasma Physics/TU Darmstadt June 8, 2004 Energy loss of heavy ions in dense plasma Goal: To understand the interaction of heavy ions.
W. Eckstein, MPIPP Garching, Germany
G.I. SmirnovMaterials for Collimators and Beam Absorbers, Simulating radiation damage effects in LHC collimators (code development status)
Proposed Laboratory Simulation of Galactic Positron In-Flight Annihilation in Atomic Hydrogen Benjamin Brown, Marquette University, Milwaukee, WI, USA.
Improvements of microscopic transport models stimulated by spallation data for incident energies from 113 to MeV Umm Al-Qura University and King.
Saturn Magnetosphere Plasma Model J. Yoshii, D. Shemansky, X. Liu SET-PSSD 06/26/11.
Ion Implantation CEC, Inha University Chi-Ok Hwang.
Jari Koskinen, Sami Franssila
12th Geant4 Space Users Workshop
DOE Plasma Science Center Control of Plasma Kinetics
Tatyana Sizyuk Ahmed Hassanein School of Nuclear Engineering
GEANT4-DNA New physics models …from cell to DNA Christophe Champion
Sang-Pil Kim1,2, Kwang-Ryeol Lee1, Jae-Sung Kim3 and Yong-Chae Chung2
NEEP 541 – Sputtering Fall 2002 Jake Blanchard.
Russian Research Center “ Kurchatov Institute”
1.6 Glow Discharges and Plasma
Chapter 4 Mechanisms and Models of Nuclear Reactions
Multiscale modeling of hydrogen isotope transport in porous graphite
Surface analysis techniques part I
Presentation transcript:

Laboratory measurements of sputtering and modeling of ion-surface interaction processes Marcelo Fama Laboratory for Atomic and Surface Physics University of Virginia R.A. Baragiola R.E. Johnson SERENA-HEWG Conference - Santa Fe, NM - May 12-14, 2008

Outline Motivation Introduction Sputtering Linear Cascade Theory Sputtering of Compounds Surface Morphology Computer modeling Monte Carlo Molecular Dynamics Laboratory simulations Discussion

Motivation A complex scenario Magnetosphere Exosphere Electron stimulated desorption Photon stimulated desorption Thermal desorption Sputtering induced by charged particles bombardment Chemical sputtering Meteoritic impact - f (Z, m, E, Q) - Surface Composition and Morphology Mercury

Introduction Sputtering q Target (Z2, m2, T) Y = atoms or molecules ejected incoming ion Elastic Sputtering Electronic Sputtering q Linear Cascade Theory (P. Sigmund 1969) Primary excitation Secondary electrons Exciton/Hole Dynamics Ion beam (Z1, m1, E, Q, q)

Introduction Linear Cascade Theory Mono-Atomic Targets FD: Distribution of deposited-energy L: Target Parameters P. Sigmund, Phys. Rev. 184 (1969) 383 Normal Incidence Sn: Nuclear-stopping cross section (U) C0  Differential cross section for elastic scattering (B-M) U0: Surface binding energy a is an energy-independent function of the ratio between the mass of the target m2 and of the projectile m1 Differential Yield Maximum at ES = U0 / 2  ES-2 for ES >> U0

Introduction Linear Cascade Theory Limitations Mono-atomic targets Amorphous materials It works satisfactorily at intermediate and high energies (> 1keV) It doesn’t consider local U0 U’0 > U0

Introduction Linear Cascade Theory Example #1: Si Sigmund’s C0 = 1.8 x 10-16 cm2 C0 = (x0 N)-1 Sublimation Energy ~U0 = 4.7 eV Ycalc. Yexp. 1 keV H+ 0.11 0.008 4 keV He+ 0.28 0.09 Problem partially solved by M. Vicanek et al., NIM B36 (1989) 124  refine calculation for C0 Empirical Fit 4He Si W. Eckstein & R. Preuss, J. Nucl. Mater. 320 (2003) 209

Introduction Linear Cascade Theory Example #2: H2O (ice) M. Famá et al., Surf. Sci. 602 (2008) 156 Sigmund’s C0 = 1.8 x 10-16 cm2 Water Ice C0 = 1.3 x 10-16 cm2 Sublimation Energy ~U0 = 0.45 eV

 Y = Introduction CASSINI Sputtering of ice grains and icy satellites in Saturn's inner magnetosphere, Planetary and Space Science, In Press R.E. Johnson, M. Famá, M. Liu, R.A. Baragiola, E.C. Sittler Jr, H.T. Smith  Y = CASSINI

Sputtering of Compounds Introduction Sputtering of Compounds Preferential sputtering Different binding energies Recoil implantation Radiation induced diffusion (segregation) Surface composition  bulk composition

Introduction Surface Morphology Z = h(x,y) P A O YR  c YL(0) M.A. Makeev & A.L. Barabási, NIM B222 (2004) 316 O Maximum enhancement in the yield ~200% T.A. Cassidy & R.E. Johnson, Icarus 176 (2005) 499 Monte Carlo simulations of sputtering within a regolith YR  c YL(0) with 0.2 < c < 1

TRIM - Binary Collision Approximation Computer Modeling Monte Carlo TRIM - Binary Collision Approximation Equation of Motion q p E V(r) q, T p T Displacement Energy Surface Binding Energy Lattice Binding Energy Heat of Sublimation ~1-3 eV ~15 eV Semicond. ~25 eV Metals

DisplacementEnergy (eV) Computer Modeling Monte Carlo TRIM – He+ (4 keV)  Albite NaAlSi3O8 DisplacementEnergy (eV) Surface Binding Energy (eV) Lattice Na 25 1.12 3 Al 3.36 Si 15 4.7 2 O 28 Reliability of a popular simulation code for predicting sputtering yields of solids and ranges of low-energy ions K. Wittmaack, J. Applied Phys. 96 (2004) 2632

Computer Modeling Molecular Dynamics No assumptions or approximations other than V(r) and Se Complete description of the projectile-surface interaction Complete description of energy dissipation Local surface binding energy, Sn, Tm are naturally included Surface topography can be easily considered

Total Sputtering Yield for Minerals Experimental Methods Total Sputtering Yield for Minerals Cambridge A.J.T. Jull et al., NIM 168 (1980) 357 - Ion microprobe - Interferometry R National Physical Laboratory M.P. Seah et al., SIA 39 (2006) 69 - Mesh replica Virginia Not tested in minerals yet Df - Microgravimetry

Energy Distributions of Sputtered Species Experimental Methods Energy Distributions of Sputtered Species + Time of flight Electron beams Low energy plasmas Penning ionization Post-ionizing laser Post-ionization Argonne National Laboratory M. J. Pellin (1998) - Non-radiative deexcitation - Neutralization Secondary ions +

Complementary Techniques @ Virginia Experimental Methods Complementary Techniques @ Virginia SIMS X-rays XPS + or TOF Nanosecond laser pulses (micrometeorite impact) e- NMS Quartz Crystal Microbalance (~0.1 ML) Ultra High Vacuum (~10-10 Torr)

Some Results XPS

Some Results Thermal depletion of Na

Some Results Depletion of Na due to ion bombardment

Secondary ions energy distribution Some Results Secondary ions energy distribution Ar+ (4 kev)  Albite

Modeling + + Yi  Sn / (C0 U0) Ei  E / (E + U0)3 Yi+ Instrument Magnetosphere Exosphere + + Yi  Sn / (C0 U0) Ei  E / (E + U0)3 Yi+ Ei+  exp(-b/E) E / (E + U0)3 f (Z, E) Sn U0 C0 - Surface Composition - Morphology Mercury

Modeling Mercury boundary conditions Laboratory Simulations Molecular Dynamics Sputtering of Minerals Magnetosphere Exosphere simulators Theory

Questions & Suggestions