Overview The Standard Normal Distribution

Slides:



Advertisements
Similar presentations
5-Minute Check on Activity 7-10 Click the mouse button or press the Space Bar to display the answers. 1.State the Empirical Rule: 2.What is the shape of.
Advertisements

Lesson 7 - QR Quiz Review.
5.1 Normal Probability Distributions Normal distribution A continuous probability distribution for a continuous random variable, x. The most important.
Section 6-3 Applications of Normal Distributions.
6-3 Applications of Normal Distributions This section presents methods for working with normal distributions that are not standard. That is, the mean is.
Slide 1 Copyright © 2004 Pearson Education, Inc.  Continuous random variable  Normal distribution Overview Figure 5-1 Formula 5-1 LAPTOP3: f(x) = 
Definitions Uniform Distribution is a probability distribution in which the continuous random variable values are spread evenly over the range of possibilities;
6-2 The Standard Normal Distribution
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Lecture Slides Elementary Statistics Eleventh Edition and the Triola Statistics Series by.
Normal Distribution Z-scores put to use!
Chapter 6 Normal Probability Distributions
Slide 1 Copyright © 2004 Pearson Education, Inc..
Statistics Normal Probability Distributions Chapter 6 Example Problems.
§ 5.2 Normal Distributions: Finding Probabilities.
Section Copyright © 2014, 2012, 2010 Pearson Education, Inc. Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series.
Slide Slide 1 Chapter 6 Normal Probability Distributions 6-1 Overview 6-2 The Standard Normal Distribution 6-3 Applications of Normal Distributions 6-4.
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Elementary Statistics 11 th Edition Chapter 6.
Section Copyright © 2014, 2012, 2010 Pearson Education, Inc. Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series.
Section 7.1 The STANDARD NORMAL CURVE
Standard Normal Distribution
1 Chapter 5. Section 5-1 and 5-2. Triola, Elementary Statistics, Eighth Edition. Copyright Addison Wesley Longman M ARIO F. T RIOLA E IGHTH E DITION.
QBM117 Business Statistics Probability and Probability Distributions Continuous Probability Distributions 1.
1 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Chapter 6. Continuous Random Variables Reminder: Continuous random variable.
Probabilistic & Statistical Techniques Eng. Tamer Eshtawi First Semester Eng. Tamer Eshtawi First Semester
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Lecture Slides Elementary Statistics Eleventh Edition and the Triola Statistics Series by.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Section 6-1 Review and Preview.
6-2: STANDARD NORMAL AND UNIFORM DISTRIBUTIONS. IMPORTANT CHANGE Last chapter, we dealt with discrete probability distributions. This chapter we will.
Chapter 5 The Normal Curve. In This Presentation  This presentation will introduce The Normal Curve Z scores The use of the Normal Curve table (Appendix.
Copyright © 2012 by Nelson Education Limited. Chapter 4 The Normal Curve 4-1.
Essential Statistics Chapter 31 The Normal Distributions.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Chapter 6 Normal Probability Distributions 6-1 Review and Preview 6-2 The Standard Normal.
Chapter 6 Normal Probability Distribution Lecture 1 Sections: 6.1 – 6.2.
Modular 11 Ch 7.1 to 7.2 Part I. Ch 7.1 Uniform and Normal Distribution Recall: Discrete random variable probability distribution For a continued random.
Think about this…. If Jenny gets an 86% on her first statistics test, should she be satisfied or disappointed? Could the scores of the other students in.
Copyright © 2013, 2009, and 2007, Pearson Education, Inc. Chapter 6 Probability Distributions Section 6.2 Probabilities for Bell-Shaped Distributions.
1 Chapter 5. Section 5-1 and 5-2. Triola, Elementary Statistics, Eighth Edition. Copyright Addison Wesley Longman M ARIO F. T RIOLA E IGHTH E DITION.
Slide Slide 1 Lecture 6&7 CHS 221 Biostatistics Dr. Wajed Hatamleh.
6-2: STANDARD NORMAL AND UNIFORM DISTRIBUTIONS. IMPORTANT CHANGE Last chapter, we dealt with discrete probability distributions. This chapter we will.
1 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Chapter 6 Continuous Random Variables.
Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Chapter The Normal Probability Distribution 7.
Normal Probability Distributions Chapter 5. § 5.1 Introduction to Normal Distributions and the Standard Distribution.
Slide Slide 1 Suppose we are interested in the probability that z is less than P(z < 1.42) = z*z*
Section 6-1 Overview. Chapter focus is on: Continuous random variables Normal distributions Overview Figure 6-1 Formula 6-1 f(x) =  2  x-x-  )2)2.
Chapter 7 The Normal Probability Distribution 7.1 Properties of the Normal Distribution.
Slide 1 Copyright © 2004 Pearson Education, Inc. Chapter 6 Normal Probability Distributions 6-1 Overview 6-2 The Standard Normal Distribution 6-3 Applications.
Density Curves & Normal Distributions Textbook Section 2.2.
Introduction to Normal Distributions
THINK ABOUT IT!!!!!!! If a satellite crashes at a random point on earth, what is the probability it will crash on land, if there are 54,225,000 square.
Lecture Slides Elementary Statistics Twelfth Edition
Distributions Chapter 5
Lecture Slides Elementary Statistics Twelfth Edition
Lecture Slides Elementary Statistics Twelfth Edition
Review and Preview and The Standard Normal Distribution
Chapter 5 Normal Probability Distributions.
Chapter 6. Continuous Random Variables
THE STANDARD NORMAL DISTRIBUTION
The Normal Probability Distribution
Elementary Statistics
Lecture Slides Elementary Statistics Twelfth Edition
The Standard Normal Distribution
Section 6-1 Review and Preview.
Sec Introduction to Normal Distributions
The Normal Curve Section 7.1 & 7.2.
Introduction to Normal Distributions
Chapter 5 Normal Probability Distributions.
Chapter 5 Normal Probability Distributions.
Basic Practice of Statistics - 3rd Edition The Normal Distributions
Introduction to Normal Distributions
Normal Probability Distribution Lecture 1 Sections: 6.1 – 6.2
Presentation transcript:

Overview The Standard Normal Distribution Sections 5-1 and 5-2 Overview The Standard Normal Distribution

NORMAL DISTRIBUTIONS If a continuous random variable has a distribution with a graph that is symmetric and bell-shaped and can be described by the equation we say that it has a normal distribution.

REMARK We will not need to use the formula on the previous slide in our work. However, it does show us one important fact about normal distributions: Any particular normal distribution is determined by two parameters: the mean, μ, and the standard deviation, σ.

UNIFORM DISTRIBUTIONS A continuous random variable has a uniform distribution if its values are spread evenly over the range of possibilities. The graph of a uniform distribution results in a rectangular shape.

EXAMPLE Suppose that a friend of yours is always late. Let the random variable x represent the time from when you are suppose to meet your friend until he arrives. Your friend could be on time (x = 0) or up to 10 minutes late (x = 10) with all possible values equally likely. This is an example of a uniform distribution and its graph is on the next slide.

0.0 10.0 0.1 Number of minutes late P(x) Area = 1

DENSITY CURVES A density curve (or probability density function) is a graph of a continuous probability distribution. It must satisfy the following properties: The total area under the curve must equal 1. Every point on the curve must have a vertical height that is 0 or greater. (That is, the curve cannot fall below the x-axis.)

IMPORTANT CONCEPT Because the total area under the density curve is equal to 1, there is a correspondence between area and probability.

EXAMPLE Suppose that a friend of yours is always late. Let the random variable x represent the time from when you are suppose to meet your friend until he arrives. Your friend could be on time (x = 0) or up to 10 minutes late (x = 10) with all possible values equally likely. Find the probability that your friend will be more than 7 minutes late.

HEIGHTS OF WOMEN AND MEN µ = 63.6  = 2.5 Men: µ = 69.0  = 2.8 63.6 69.0 Height (inches)

THE STANDARD NORMAL DISTRIBUTION The standard normal distribution is a normal probability distribution that has a mean μ = 0 and a standard deviation σ = 1, and the total area under the curve is equal to 1.

COMPUTING PROBABILITIES FOR THE STANDARD NORMAL DISTRIBUTION We will be computing probabilities for the standard normal distribution using: 1. Table A-2 located in the front cover of the text, the Formulas and Tables insert card, and Appendix A (pp. 566-567). 2. The TI-83/84 calculator.

COMMENTS ON TABLE A-2 Table A-2 is designed only for the standard normal distribution Table A-2 is on two pages with one page for negative z scores and the other page for positive z scores. Each value in the body of the table is a cumulative area from the left up to a vertical boundary for a specific z-score.

COMMENTS (CONCLUDED) 4. When working with a graph, avoid confusion between z scores and areas. z score: Distance along the horizontal scale of the standard normal distribution; refer to the leftmost column and top row of Table A-2. Area: Region under the curve; refer to the values in the body of the Table A-2. 5. The part of the z score denoting hundredths is found across the top row of Table A-2.

Look at Table A-2

NOTATION P(a < z < b) denotes the probability that the z score is between a and b. P(z > a) denotes the probability that the z score is greater than a. P(z < a) denotes the probability that the z score is less than a.

COMPUTING PROBABILITIES USING TABLE A-2 Draw a bell-shaped curve corresponding to the area you are trying to find. Label the z score(s). Look up the z socre(s) in Table A-2. Perform any necessary subtractions.

FINDING THE AREA BETWEEN TWO z SCORES To find P(a < z < b), the area between a and b: Find the cumulative area less than a; that is, find P(z < a). Find the cumulative area less than b; that is, find P(z < b). The area between a and b is P(a < z < b) = P(z < b) − P(z < a).

FINDING z SCORES USING THE TI-83/84 To find the area between two z scores, press 2nd VARS (for DIST) and select 2:normalcdf(. Then enter the two z scores separated by a comma. To find the area between −1.33 and 0.95, your calculator display should look like: normalcdf(−1.33,0.95)

NOTES ON USING TI-83/84 TO COMPUTE PROBABILITIES To compute P(z < a), use normalcdf(−1E99,a) To compute P(z > a), use normalcdf(a,1E99)

PROCDURE FOR FINDING A z SCORE FROM A KNOWN AREA USING TABLE A-2 Draw a bell-shaped curve and identify the region that corresponds to the given probability. If that region is not a cumulative region from the left, work instead with a known region that is cumulative from the left. Using the cumulative area from the left locate the closest probability in the body of Table A-2 and identify the corresponding z score.

FINDING A z SCORE CORRESPONDING TO A KNOWN AREA USING THE TI-83/84 To find the z score corresponding to a known area, press 2nd VARS (for DIST) and select 3:invNorm(. Then enter the total area to the left of the value. To find the z score corresponding to 0.6554, a cumulative area to the left, your calculator display should look like: invNorm(.6554)