CRES Amateur Radio Association

Slides:



Advertisements
Similar presentations
P. M. Livingston (Presentation from a few years back) An 80 meter Aerostat-borne Phased Array for Field-Day.
Advertisements

Amateur Radio Technician Class Element 2 Course Presentation
RF Fundamentals Lecture 3.
Intermediate Course (5) Antennas and Feeders Karl Davies East Kent Radio Society EKRS 1.
5 Foundation Course Feeders & Antennas EKRS KARL DAVIES 1.
1 Chelmsford Amateur Radio Society Intermediate Licence Course Carl Thomson G3PEM Slide Set 9: v1.2, 31-May-2009 Antennas & Feeders Chelmsford Amateur.
Chapter 13 Transmission Lines
Part II: Loops and Verticals
Introduction to Antennas Dipoles Verticals Large Loops Yagi-Uda Arrays
A NTENNA M ODELING FOR B EGINNERS Jonathan Woo W6GX June
APRS ANTENNAS by ED LAWRENCE WA5SWD SIMPLIFIED & TRANSMISSION LINES.
Part I: Dipoles by Marc C. Tarplee Ph.D. N4UFP
Foundation Licence Feeders and Antennas. What they do Feeder: transfers RF current between a transceiver and antenna without radiating radio waves. (Hope.
Antenna Types WB5CXC.
Chapter 19: Antennas By: James VE3BUX. Definition The Modern Dictionary of Electronics defines an antenna as: That portion, usually wires or rods, of.
Chapter 6 Antennas Antenna Basics
Antennas Lecture 9.
Helical Antennas Supervisor: Dr. Omar Saraereh Written By:
EZNEC Tutorial – Part III NPARC Presentation David Berkley, K2MUN And Barry Cohen, K2JV October 27, 2014.
EZNEC Tutorial – Part II NPARC Presentation David Berkley, K2MUN And Barry Cohen, K2JV October 13, 2014.
Electromagnetic Wave Theory
9. Radiation & Antennas Applied EM by Ulaby, Michielssen and Ravaioli.
ESTeem Training Class Antenna Fundamentals. Decibels (dB) Used for all mathematical calculations in the radio world. – dB is a logarithmic number dB =10.
Urban Legends from the world of Antennas Marc C. Tarplee Ph.D., N4UFP ARRL South Carolina Section Technical Coordinator.
Technician License Course Chapter 4 Lesson Plan Module 9 – Antenna Fundamentals, Feed Lines & SWR.
Joe Horanzy AA3JH April 4th, 2013 K3DN Presentation
Technician License Course Chapter 2 Radio and Electronics Fundamentals
Training materials for wireless trainers Antennas and Transmission Lines.
Family Tree of Antennas David Conn VE3KL
Antenna Types Dipole Folded Dipole Monopole
Technician Licensing Class Antennas Page 151 to 157.
General Licensing Class
Antenna Design Tools VE3KL
General Licensing Class G9A – G9D Antennas Your organization and dates here.
15 Feb 2001Property of R. Struzak1 Antenna Fundamentals (4) R. Struzak School on Digital and Multimedia Communications Using.
2M Moxon Antenna.
Antenna Modeling Presented by: Dave Woolf - K8RSP Bob Kenyon - K8LJ 12/06/2006.
Modern Electronic Communication 9th edition Jeffrey S. Beasley and Gary M. Miller Copyright ©2008 by Pearson Education, Inc. Upper Saddle River, New Jersey.
10/5/2015Antenna Presentation: Carp,Ontario1 Family Tree of Antennas David Conn VE3KL Acknowledgements Acknowledgements Doug Leach VE3XK Doug Leach VE3XK.
Simple radio communications system. Electric field around elements.
SUBELEMENT G9 ANTENNAS AND FEEDLINES [4 Exam Questions–4 Groups]
G9 - Antennas 1 G9 – Antennas and Feedlines [4 exam questions - 4 groups] G9A - Antenna feed lines: characteristic impedance and attenuation; SWR calculation,
Technician License Course Chapter 4 Lesson Plan Module 9 – Antenna Fundamentals, Feed Lines & SWR.
Part I: Dipoles by Marc C. Tarplee Ph.D. N4UFP
1 Chelmsford Amateur Radio Society Intermediate Licence Course Carl Thomson G3PEM Slide Set 9 Antennas & Feeders Chelmsford Amateur Radio Society Intermediate.
Practice Questions 2015 General License Course. How does antenna gain stated in dBi compare to gain stated in dBd for the same antenna? A. dBi gain figures.
Moxon Beams Design & Building by WB5CXC 2006 Ham - Com.
Antenna Basics.
Basic Wire Antennas Part I: Dipoles.
G9 - Antennas 1 G9 – Antennas and Feedlines [4 exam questions - 4 groups] G9A - Antenna feed lines: characteristic impedance and attenuation; SWR calculation,
Part I: Dipoles by Marc C. Tarplee Ph.D. N4UFP
Chapter 7 Antennas Antennas Jim Siemons, AF6PU.
Transmission Lines As Impedance Transformers
Antennas 10/18/2017.
Technician Licensing Class
Vertical Antenna Myths
Antennas with Loads and Traps – What are these things and why are they used in our antennas? By: Dave Brown K3CTN.
Amateur Extra Q & A Study Pool
Technician Licensing Class
Ham ANTENNAS: A practical introduction to The THEORY AND operation
VE3KL Selecting a Portable HF Antenna
Part I: Dipoles by Marc C. Tarplee Ph.D. N4UFP
Antenna Design Tools VE3KL
CHAPTER 8 ANTENNAS.
Introduction to Antenna Modeling
Helical Antennas Supervisor: Dr. Omar Saraereh Written By:
What is a beam antenna? A. An antenna built from aluminum I-beams
WELCOME.
Propagation, Antennas and Feed Lines American Radio Relay League
Presentation transcript:

CRES Amateur Radio Association Antenna Fundamentals Presented by: Bob Kenyon - K8LJ CRES Amateur Radio Association December 6, 2012

Agenda Introduction and background Basic antenna theory Transmission line impacts Antenna modeling Members’ antenna questions discussion Conclusion and next steps discussion

Basic Communications System Antenna Transceiver Transmission Line Electromagnetic Wave Radiated Electrical Wave Propagated Electrical Signal Generated (Voltage) (Voltage & Current) (Voltage, Current & Magnetic Field)

Antenna Equivalent Circuit (Feedline Not Included) Radiation Resistance Antenna Resistive Loss Ground Losses RG RR RL Usually not a problem for non-shortened horizontal antennas, such as a full size dipole This is where we want the power to go Often a big problem, especially for vertically polarized antennas RR Ant. Efficiency = X 100% RR + RL + RG

Basic Antenna Concepts • Antenna gain is achieved by pattern alteration ( directivity ) • All antennas are directive (except an isotropic source) • Antenna gain = antenna directivity - antenna losses • Gain is affected by antenna design, physical realization, & environment • For antennas near earth, the pattern ( directivity , gain) is greatly affected by reflections from the earth’s surface (ground conductivity impact) • Reflection of horizontally polarized signals is usually quite efficient • Reflection of vertically polarized signals is often inefficient • Theory of Reciprocity: Antennas behave the same transmitting & receiving

Zin is High - can range from Current Feed vs. Voltage Feed (for a λ /2 dipole, not all antennas) I Zin is Low ~ 7 3 ohms in Free Space V Zin ~ RR Center Feed (Current Max.) = Current Feed I Zin is High - can range from 100s to 1000s of ohms V End Feed (Voltage Max.) = Voltage Feed Zin >> RR

Cable Attenuation - dB Per 100 Feet Frequency (MHz)

Transmission Line Modeling TLDetails free program Go to AC6LA.com

Practical Example - RG-8A Coax vs. 450  Line Assume a 100 ft long, 50 ft high, center-fed dipole Average ground conductivity (5mS/m), & permittivity of 13 Antenna impedance computed using EZNEC (NEC-2 engine) Frequency (MHz) 1.8 3.8 7.1 10.1 14.1 18.1 21.4 24.9 28.4 Ant Impedance (Ohms) 4.5 - j1673 38.9 - j362 481 + j964 2584 - j3292 85.3 - j123.3 2097 + j1552 345 - j1073 202 + j367 2493 - j1375 SWR RG-8A Coax >1000:1 63:1 49:1 134:1 5.6:1 65:1 73:1 18:1 Loss 100 ft RG-8A Coax 26.2 dB 5.7 dB 10.2 dB 1.8 dB 8.7 dB 9.5 dB 4.9 dB 9.7 dB SWR 450  Line >1000:1 19:1 6.2:1 15.2:1 5.7:1 7.3:1 9.4:1 3.9:1 Loss 100 ft 450  Line 9.2 dB 0.5 dB 0.2 dB 0.6 dB 0.3 dB 0.4 dB

Zin is High - can range from Current Feed vs. Voltage Feed (for a λ /2 dipole, not all antennas) I Zin is Low ~ 7 3 ohms in Free Space V Zin ~ RR Center Feed (Current Max.) = Current Feed I Zin is High - can range from 100s to 1000s of ohms V End Feed (Voltage Max.) = Voltage Feed Zin >> RR

· · Horizontal Antenna Above Earth Direct Wave Horizontal Antenna (End View) To Distant Point · α Reflected Wave +h Earth’s Surface α -h 180º Phase Reversal If d = n •180º (n odd) Wave Reinforcement Image Antenna (- 180º phase) · If d = n •180º (n even) Wave Cancellation d n = 0,1,2,3,4 ... (180º = λ/2)

Antenna Modeling

Why Model Antennas? Easily perform “what if” analyses Computer horse-power now available, even on PCs Significant resource ($) & time savings Improve accuracy & repeatability Easily perform “what if” analyses Learn a lot about antennas quickly It’s fun! … (warning - can become additive)

What Can a Model Tell Us? Antenna physical depiction (view) Far Field Pattern - 2D plots (azimuth or elevation) - 3D plots (both together) Antenna gain at any angle Front-to-back, front-to-side ratios, 1/2 power beamwidth etc. SWR vs. frequency Impedance (real & imaginary) vs. frequency Wire currents - magnitude and phase for each segment Other stuff

Antenna Modeling Terms Wire - Basic antenna model building entity (linear, no bends) Segment - Sub-division of a wire Source - Feed point electrical specifics (Volts/Amps & Phase) Load - R, L, and C values alone or in any combination Ground Type - Free space, perfect and types of “real” ground

Wires and Segments • • Dipole 1 Wire 11 Segments 1 3 = Wire Junction 5 Segments Each Quad Loop = Source 4 2 N = Wire Number 1 2 3 Wires 2 With 2 Segments 1 With 7 Segments Bent Element 1 3

Antenna Modeling Guidelines A wire should have at least 9 segments per half-wavelength (times 2 + 1 for impedance and SWR plots) Segment length should be > than 4 times wire diameter To extent possible, keep segment lengths equal

Antenna Modeling Products (Sample) Public Domain (Free) 4nec2 - Modeling and optimization program (Dutch) MMANA - By JE3HHT, Makoto (Mako) Mori (MININEC) EZNEC Demo 5.0 - By W7EL (www.eznec.com) Commercial Nec-Win Plus (similar to EZNEC) K6STI - Various modeling & optimization programs (MININEC) EZENEC 5.0, EZNEC + 5.0, EZNEC Pro (NEC-4)

Demo of EZNEC 5.0 DEMO Available at W7EL@EZNEC.com

1/2 Wave Dipole Elevation Plots vs. Antenna Height 14 Mhz. - Perfect Ground 1/4 Wavelength (17.5 ft.) 1 Wavelength (70 ft.) 5/4 Wavelengths (87.5 ft.) 1/2 Wavelength (35 ft.) 1 & 1/2 Wave-lengths (105 ft.) 3/4 Wavelength 52.5 ft.

Estimated Ground Conductivity in the U.S. = 30 mS/meter = 0.5 mS/meter mS = .001 siemens = .001 mho Salt water = 5000 mS/meter

(Applies to λ /2 Dipole Also) Vertical Antenna Patterns In Free Space (Applies to λ /2 Dipole Also) Above a Perfectly Conducting Surface

Baluns Love them Hate them

Long Wires V Beams Rhombics

Creating a V Beam

A Rhombic – Two V Beams Back-to-Back

Voice of America Antennas Near Cincinnati 5,370 ft.

K8LJ 160 – 6 Meter Antenna Cost Insulator - $ 0 Wire - $ 0.53 PL259 - $ 0.50 Coax - $ 4.00 Total - $ 5.03

Bucky

References M - Maxwell, M W. , Reflections: Transmission Lines and Antennas, Newington, CT: ARRL,1990. T- The ARRL Antenna Book, Newington, CT: ARRL, 2005. - Jeffrey S. Beasley & Gary M. Miller, Modern Electronic Communication, 9th Edition, Columbus, OH: Prentice Hall, 2008. - Kraus, John D. Ph.D., Antennas, New York, NY: McGraw-Hill, 1950. - The ARRL Handbook, Newington, CT: ARRL, 2002 W- Ward Silver, QST, Smith Chart Fun 1, 2 & 3, Dec. 2007, Jan. 2008, Feb. 2008