Unified Studies of the exotic structures in 12 Be and the  + 8 He slow scattering Makoto Ito, Naoyuki Itagaki Theoretical Nuclear Physics Lab., RIKEN.

Slides:



Advertisements
Similar presentations
Accelerator Physics, JU, First Semester, (Saed Dababneh).
Advertisements

Nuclear Binding Energy
1 Copyright © 2013 Elsevier Inc. All rights reserved. Chapter 38.
Modern Theory of Nuclear Structure, Exotic Excitations and Neutrino-Nucleus Reactions N. Paar Physics Department Faculty of Science University of Zagreb.
Be 同位体における Λ 粒子による核構造の変化 井坂政裕 ( 理研 ) 共同研究者:本間裕明,木村真明 ( 北大 )
Structure of  hypernuclei with the antisymmetrized molecular dynamics method Masahiro Isaka (RIKEN)
Cluster states around 16 O studied with the shell model Yutaka Utsuno Advanced Science Research Center, Japan Atomic energy Agency ―Collaborator― S. Chiba.
Clustering in 12Be: Determination of the Enhanced monopole strength
Unified studies of light neutron-excess systems from bounds to continuum Makoto Ito Department of Pure and Applied Physics, Kansai University I. Introduction.
Ab Initio Calculations of Three and Four Body Dynamics M. Tomaselli a,b Th. Kühl a, D. Ursescu a a Gesellschaft für Schwerionenforschung, D Darmstadt,Germany.
Invariant-mass spectroscopy of neutron halo nuclei Takashi Nakamura 中村隆司 Tokyo Institute of Technology 東京工業大学 中日 NP 06, Shanghai.
Spectroscopy at the Particle Threshold H. Lenske 1.
微視的核構造反応模型を用いた 9Li 原子核の励起状態の研究
NuPAC Physics at the proton and neutron drip lines Theoretical perspectives Angela Bonaccorso.
Nicolas Michel Importance of continuum for nuclei close to drip-line May 20th, 2009 Description of drip-line nuclei with GSM and Gamow/HFB frameworks Nicolas.
Lectures in Istanbul Hiroyuki Sagawa, Univeristy of Aizu June 30-July 4, Giant Resonances and Nuclear Equation of States 2. Pairing correlations.
Reaction dynamics of light nuclei around the Coulomb barrier Alessia Di Pietro INFN-Laboratori Nazionali del Sud ARIS 2014Alessia Di Pietro,INFN-LNS.
Microscopic time-dependent analysis of neutrons transfers at low-energy nuclear reactions with spherical and deformed nuclei V.V. Samarin.
8 He における ダイニュートロン形成と崩 れ 2013/7/27 RCNP 研究会「核子・ハイペロン多体系におけるクラスター現象」 1 Department of Physics, Kyoto University Fumiharu Kobayashi Yoshiko Kanada-En’yo arXiv:
John Daoutidis October 5 th 2009 Technical University Munich Title Continuum Relativistic Random Phase Approximation in Spherical Nuclei.
Three-body cluster state in 11 B Center for Nuclear Study, University of Tokyo KAWABATA Takahiro RCNP, Osaka University H. Fujimura, H. Fujita, M. Fujiwara,
Coupled-Channel analyses of three-body and four-body breakup reactions Takuma Matsumoto (RIKEN Nishina Center) T. Egami 1, K. Ogata 1, Y. Iseri 2, M. Yahiro.

横田 朗A 、 肥山 詠美子B 、 岡 眞A 東工大理工A、理研仁科セB
Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)
モンテカルロ殻模型による ベリリウム同位体の密度分布 T. Yoshida (a), N. Shimizu (a), T. Abe (b) and T. Otsuka (a, b) Center for Nuclear Study (a) and Department of Physics (b),
XII Nuclear Physics Workshop Maria and Pierre Curie: Nuclear Structure Physics and Low-Energy Reactions, Sept , Kazimierz Dolny, Poland Self-Consistent.
クラスター・シェル競合の新展開 板垣 直之 ( 京都大学基礎物理学研究所 ). Shell structure; single-particle motion of protons and neutrons decay threshold to clusters Excitation energy.
Nicolas Michel CEA / IRFU / SPhN Shell Model approach for two-proton radioactivity Nicolas Michel (CEA / IRFU / SPhN) Marek Ploszajczak (GANIL) Jimmy Rotureau.
The calculation of Fermi transitions allows a microscopic estimation (Fig. 3) of the isospin mixing amount in the parent ground state, defined as the probability.
Spin-orbit potential in 6 He studied with polarized proton target 2007/6/5, INPC2007 Satoshi Sakaguchi Center for Nuclear Study, Univ. of Tokyo.
1 Reaction Mechanisms with low energy RIBs: limits and perspectives Alessia Di Pietro INFN-Laboratori Nazionali del Sud.
Takuma Matsumoto (Kyushu Univ.) K. Minomo, K. Ogata a, M. Yahiro, and K. Kato b (Kyushu Univ, a RCNP, b Hokkaido Univ) Description for Breakup Reactions.
Cluster-shell Competition in Light Nuclei N. Itagaki, University of Tokyo S. Aoyama, Kitami Institute of Technology K. Ikeda, RIKEN S. Okabe, Hokkaido.
Coupling of (deformed) core and weakly bound neutron M. Kimura (Hokkaido Univ.)
Dott. Antonio Botrugno Ph.D. course UNIVERSITY OF LECCE (ITALY) DEPARTMENT OF PHYSICS.
10,12 Be におけるモノポール遷移 Makoto Ito 1 and K. Ikeda 2 1 Department of Pure and Applied Physics, Kansai University I. 導入:研究の大域的目的とこれまでの研究成果 II. 今回の目的:モノポール遷移への興味.
N. Itagaki Yukawa Institute for Theoretical Physics, Kyoto University.
Low-lying states in 11 B Center for Nuclear Study, University of Tokyo KAWABATA Takahiro RCNP, Osaka UniversityH. Fujimura, M. Fujiwara, K. Hara, K. Hatanaka,
Anomalous two-neutron transfer in neutron-rich Ni and Sn isotopes studied with continuum QRPA H.Shimoyama, M.Matsuo Niigata University 1 Dynamics and Correlations.
Cluster Phenomena in Stable and Unstable Nuclei Cluster Phenomena in Stable and Unstable Nuclei Y. Kanada-En’yo (Kyoto Univ.) Collaborators: Y. Hidaka(RIKEN),
H.Sakurai Univ. of Tokyo Spectroscopy on light exotic nuclei.
N. Itagaki Yukawa Institute for Theoretical Physics, Kyoto University.
Cluster aspect of light unstable nuclei
July 29-30, 2010, Dresden 1 Forbidden Beta Transitions in Neutrinoless Double Beta Decay Kazuo Muto Department of Physics, Tokyo Institute of Technology.
Reaction studies with low-energy weakly-bound beams Alessia Di Pietro INFN-Laboratori Nazionali del Sud NN 2015Alessia Di Pietro,INFN-LNS.
Fusion of light halo nuclei
Nicolas Michel CEA / IRFU / SPhN / ESNT April 26-29, 2011 Isospin mixing and the continuum coupling in weakly bound nuclei Nicolas Michel (University of.
Lecture 8. Chemical Bonding
Faddeev Calculation for Neutron-Rich Nuclei Eizo Uzu (Tokyo Univ. of Science) Collaborators Masahiro Yamaguchi (RCNP) Hiroyuki Kamada (Kyusyu Inst. Tech.)
Adiabatic hyperspherical study of triatomic helium systems
Studies of light neutron-excess systems from bounds to continuum Makoto Ito Department of Pure and Applied Physics, Kansai University I. Introductions.
Systematic analysis on cluster components in He-isotopes by using a new AMD approach Niigata University Shigeyoshi Aoyama FB18, August 24 (2006) S. Aoyama,
Few-Body Models of Light Nuclei The 8th APCTP-BLTP JINR Joint Workshop June 29 – July 4, 2014, Jeju, Korea S. N. Ershov.
Content of the talk Exotic clustering in neutron-rich nuclei
Open quantum systems.
Cluster formation and breaking, and cluster excitation in light nuclei
An isospin-dependent global elastic nucleon-nucleus potential
Satoshi Adachi Research Center for Nuclear Physics (RCNP),
Yokohama National University Takenori Furumoto
Hiroshi MASUI Kitami Institute of Technology
Impurity effects in p-sd shell and neutron-rich L hypernuclei
On a Search for -Mesic Nuclei at MAMI-C
Fusion and neutron transfer reactions with weakly bound nuclei within time-dependent and coupled channel approaches VIACHESLAV SAMARIN Flerov Laboratory.
Cluster and Density wave --- cluster structures in 28Si and 12C---
Breakup of weakly bound nuclei and its influence on fusion
Content of the talk Exotic clustering in neutron-rich nuclei
Di-nucleon correlations and soft dipole excitations in exotic nuclei
直交条件模型を用いた16Oにおけるαクラスターガス状態の研究
Naoyuki Itagaki Yukawa Institute for Theoretical Physics
Presentation transcript:

Unified Studies of the exotic structures in 12 Be and the  + 8 He slow scattering Makoto Ito, Naoyuki Itagaki Theoretical Nuclear Physics Lab., RIKEN Nishina Center Department of Physics, Tokyo University I. Introduction II. Formulation : Extended microscopic cluster model III.  + 8 He scattering and exotic structures in 12 Be IV. Monopole transition of 12 Be V. Summary and Future perspectives

Cluster effects in reactions 1. Molecular Resonances (MRs) are typical examples : 12 C+ 12 C, 16 O+ 16 O, 12 C+ 16 O Val. N : tight binding Transfers of a valence neutron → No sharp resonances Val. N : weak binding Transfer of “active” neutrons → Sharp resonances are generated ? A (Cores) >> XN A (Cores) ~ XN ⇒ Collective excitation of individual nuclei is essential. 2. MR system + one valence neutron : 12 C+ 13 C, 16 O+ 17 O, etc… Transfer process is extensively investigated ⇒ NO clear resonances !! Transfer effect in neutron-rich systems Previous studies ( 12 C+ 13 C etc)Neutrons’ drip-line case N~ZN~Z N >> Z An additional neutron

Our interest : transfer reaction by a neutrons’ drip line nucleus Ex. energy Orthogonality Low-lying B.S. states Molecular Orbitals (MOs):  ― 、  + ‥ Resonance formation Slow RI beam Transfer channels Today’s report N AB E ( A+B ) Unbound region Bound region + 8 He + 4 He (= 12 Be) 4 He + 4N + 4 He Scattering and structure ⇒ Transfer effects shall be strong !! We should combine MO and asymptotic channels. ( ) ( Exp. at GANIL )

12 Be (experiments) 12 Be+  → ( 6 He+ 6 He)+  A. Saito et al. 6 He + 6 He (Atomic) Moleculue Structural changes Low-lying (Breaking of N=8 Magicity)High-lying states (Atomic) (Important system before proceeding systematic studies) E(sd-0p) ~ 1MeV Def. Length ~ 2fm

 1/2+ (sd) -- ++ -- ++ 3/2+ (sd) 1/2- (0p) 3/2- (0p) 1/2+ (sd) 1/2- (pf) + ― ― + Formulation ( I ) : Single particle motion in two centers  ( s.p.) =  (L) ±  (R) : LCAO  L (0p) ±  R (0p) Y(1,0) Y(1,±1)  (0p) S Z Config. Mixing Distance : S  (0s) 4 ( 10 Be=  +  +N+N )

 (  + ) 2 = ( P z (L) ― P z (R) ) 2 Formulation (II)  + 6 He 6 He +  5 He + 5 He Linear Combination of Atomic Orbital (LCAO)   + 6 He(0 + ) = P z (L) ・ P z (L) + P z (R) ・ P z (R) - 2P z (L) ・ P z (R) = P x (R) ・ P x (R) + P y (R) ・ P y (R) +P z (R) ・ P z (R) Total wave function Pm(a)・Pn(b)Pm(a)・Pn(b) (m,n)=x,y,z(a,b) = L,R Variational PRM S Z General MO: ( C(L)P i (L) + C(R)P j (R) ) 2

Energy surfaces in 12 Be =  +  +4N (0p 3/2 ) 2 (sd) 2 (  - ) 2 (  + ) 2 (0p) 6 (  - ) 4 Adiabatic Energy surfaces 2 MeV Atomic-Molecular Hybrid configuration 6 He Covalent SD S ~ 5fm V NN : Volkov No.2+G3RS J  = 0 +  + 8 He 6 He + 6 He 5 He + 7 He  + 8 He Continuum Energy R(  ) ~ 1.4fm

Coupling to open channels in continuum Open channels Compound states (Closed) Bound state approximation with Atomic Orbital Basis Scattering B.C. Rearrangement channels :  + 8 He g.s. 、 6 He g.s. + 6 He g.s. 、 5 He g.s. + 7 He g.s. Closed states method : Prof. Kamimura, Prog. Part. Nucl. Phys. 51 (2003) 400 ~ 500 S.D. with J  projection

 + 8 He ⇒ 6 He + 6 He Cross sections ( mb ) E c.m. ( MeV ) Cross sections of neutron transfers E c.m. ( MeV )  + 8 He ⇒ x He + y He (J  =0 + ) Elastic 6 He + 6 He 5 He + 7 He Dotted curves : Three open channels only Solid curves: Open + closed chanels This is a prediction for recent experiments at GANIL.

Effects of the transfer coupling : Minimum coupling  + 8 He g.s.  + 8 He(2 1 + ) 6 He g.s. + 6 He(2 1 + ) 6 He(2 1 + ) + 6 He(2 1 + ) 5 He(3/2 - ) + 7 He(3/2 1 - ) 5 He(3/2 - ) + 7 He(1/2 1 - ) 5 He(3/2 - ) + 7 He(5/2 1 - ) 5 He(1/2 - ) + 7 He(3/2 1 - ) 6 He g.s. + 6 He g.s. Dotted curves Sharp resonant structures are generated by Transfer Coupling → New aspects !!  + 8 He ⇒ x He+ y He Elastic 6He+6He 5He+7He I=0 5He+7He I=2 Solid : Full calculation

Schematic picture of excitation modes

Excitation modes in 12 Be 7 He 5 He 6 He 8 He 6 He Excitation from the state. Excitation from the state. Cluster + S. P. Excitation Cluster’s relative Motion is excited. Single particle Excitation (-)2(-)2 (-)2(-)2 (  - ) 2 (  + ) 2 (0p R )(0p L ) (  + )  + 8 He ⇒ 6 He+ 6 He Covalent SD  -  REL. + S.P. of 4N 6 He + 6 He  + 8 He

Coexistence in A=12 systems : Coexistence phenomena  + 8 He g.s. 6 He g.s. + 6 He g.s. 5 He g.s. + 7 He g.s. 12 C  12 B  + 8 Be g.s. 5 He g.s. + 7 Be g.s. 6 He g.s. + 6 Be g.s.  + 8 Li g.s. 6 He g.s. + 6 Li g.s. 5 He g.s. + 7 Li g.s. 12 Be Hoyle state MeV 8.8 MeV 5.4 MeV 2.9 MeV ~ 4 MeV Coexistence becomes prominent. Vn-n 、 V  -n is Weak.

Comparison of 12 Be and 12 C 12 Be +  → ( 6 He+ 6 He) +  12 C +  → (  +  +  ) +  There appear many resonances !! ( A. Saito et al. at Tokyo Univ. ) ( M. Itoh et al. at Tohoku Univ. ) 0+0+ No decays to  + 8 He 7.512

Rotational bands : Coexistence of MRs and covalent SD Exp. at RIKEN (Saito) Red : Covalent SD Pink : 5 He + 7 He Green : 6 He + 6 He Blue :  + 8 He Green squares: (  - ) 2 (  + ) 2 White square: (  - ) 2 (  - ) 2 Exp. by Freer Exp. at RIKEN (Shimoura) Bound region Scattering region

Monopole Transition Pioneering work on monopole transition Simple shell model (1p-1h, 2hw) : No strength around low-lying region, Ex<10MeV Cluster correlation in a ground state (Yamada et al., PTP, inpress) There is a possibility that monopole transitions are enhanced If cluster structures are developed. ( Ex < 10MeV ) Excitation of clusters’ relative motion (2hw) Cluster structure If has large cluster components, the monopole matrix elements will be enhanced ! Large cluster components in G.S. can be always justified by Bayman-Bohr Theorem Why monopole ?

Adiabatic energy surfaces in 12 Be Adiabatic Energy surfaces V NN : Volkov No.2+G3RS  + 8 He 8 He (  - ) 2 (  + ) 2  –  Distance 3 rd st 0 + GCM (0 1 + ) GCM (0 3 + ) Cluster Excitation  –  Distance

Monopole transition of 12 Be (  - ) 2 (  + ) 2 8 He Adiabatic connection enhances the Monopole transition ! → is enhanced.  –  distance ( fm ) ( a.u. )

Adiabatic surfaces (J  = 0 + ) Energy spectra ( J  = 0 + ) ー i W(R)  + 6 He(2 1 + ) 10 Be case : M.I., PLB636, 236 (2006) Cluster

Contents Unified description of the  + 8 He reactions and the exotic structures in 12 Be Results New features 2. Exited (resonance) states are characterized in terms of the excitation degree of freedoms included in the ground state. (Val. neutrons or cluster relative motion) 1. Comparison with the recent experiment of the  + 8 He scattering (GANIL) Future studies M. I., N. Itagaki, H.Sakurai, K. Ikeda, PRL 100, (2008). M. I., N. Itagaki, PRC78, (R) (2008). 1. Transfer coupling is important for the formation of the sharp resonances. 2. Systematic studies on the resonant scattering of neutrons’ drip-line nuclei M. I., N. Itagaki, Phys. Rev. Focus Vol.22, Story4 (2008). (Resonance formation by neutron transfers ) 3. The energy spacing of the resonances becomes quite small. 4. The monopole transition is enhanced with a development of the cluster.

Coverage by APS American Phys. Society WEB Journal Phys. Rev. Focus See also, RIKEN RESEARCH 5 September (2008) (

Extension of Cluster Concept Rigid cluster 8 He 6 He 7 He 5 He S S ~ 3MeV Be =  +  + 4N C = (  +  ) +  16 O =  + 12 C 0S D ~ 7MeV ・・・・ Excitation : 8 Be-  Rel. motion 6 He 5 He Excitation : 12 C-  Rel C Rot. ~ 4 MeV Loose cluster Clusters are rigid. Neutron rearrangements with small energy increasing Clusters are loose !! dE ~ 2 MeV dE ~ 1 MeV (N ~ Z : dE>10 MeV)

Generalized Two-center Cluster Model (GTCM) Combined model of mol. orbit and asymptotic channels C1 C2C3  0Pi (i=x,y,z) coupled channel with atomic basis Mol. Orbit  8 He Resonance PRM PTP113 (05)  + 8 He Scattering PRC78(R) (08) 12 Be=  +  +4N ー i W(R) S, Ci : Variational PRM S Combine Absorbing BCScattering BCTr. Density 12 Be(0 1 + )  → 12 Be(0 ex + ) Monopole Transition 7 He 5 He 6 He M. Ito et al., PLB588(04), PLB636(06), PRL100(08)

Molecular structures will appear close to the respective cluster threshold. α-Particle ⇒ Stable Systematic Appearance of  cluster structures 3 H+p ~ 20 MeV Cluster structures in 4N nuclei IKEDA Diagram Ikeda’s Threshold rules Be isotopes Molecular Orbital : Itagaki et al. ― ― + + PRC61,62 (2000)

Studies on Exotic Nuclear Systems in (E x,N, Z) Space ( N,Z ) : Two Dimensions Ex. energy Structural Change Low-lying Molecular Orbital :  ― 、  + ‥ Unbound Nuclear Systems Slow RI beam Decays in Continuum Is Threshold Rule valid ?? N

H. Voit et al.,NPA476,491 (1988) E. Almqvist et al., PRL4, 515 (1960) Molecular resonance phenomena in stable systems 12 C+ 12 C at Coulomb barrier ⇒ Sharp resonances 13 C+ 12 C at Coulomb barrier ⇒ NO clear resonances

 (  + ) 2 = ( P z (L) ― P z (R) ) 2 Formulation : 10 Be=  +  +N+N  + 6 He 6 He +  5 He + 5 He Linear Combination of Atomic Orbital (LCAO)   + 6 He(0 + ) = P z (L) ・ P z (L) + P z (R) ・ P z (R) - 2P z (L) ・ P z (R) = P x (R) ・ P x (R) + P y (R) ・ P y (R) +P z (R) ・ P z (R) Total wave function : Fully anti-symmetrized Pm(a)・Pn(b)Pm(a)・Pn(b) (m,n)=x,y,z(a,b) = L,R Variational PRM S Z ( 12 Be=  +  +4N: 38 AOs,K=0 )  : (0s) 4

Enhancement of the two neutron transfer Unitary condition of S-matrix Open Closed 5 He + 7 He 6 He + 6 He 4 He + 6 He Covalent SD, | S f,i | 2 =1  + 8 He ⇒ 6 He+ 6 He Strong decay into 6 He+ 6 He J  = 0 + Large part of the flux flows to 6 He+ 6 He.

本研究の背景 単極遷移とクラスター構造に関する先行研究 下浦 : 単純な殻模型の場合、 Ex<10MeV に単極遷移の強度はない 基底状態におけるクラスター相関 ( 山田 ) クラスター構造の発達に伴い、低励起領域に強い単極遷移強度 が現れることが指摘されている。 クラスターの相対運動を 2hw 励起 ( N : クラスター相対運動の量子 ) 殻模型 + クラスター 基底状態にクラスターの種があり、それが 2hw 励起する クラスター基底 = N ( 最低許容数 ) + N ( 高節数 ) クラスター構造 ++ N = N low N > N low

Why monopole ? Pioneering work on monopole transition Simple shell model (1p-1h, 2hw) : No strength around low-lying region, Ex<10MeV Cluster correlation in a ground state (Yamada et al., PTP, inpress) There is a possibility that monopole transitions are enhanced If cluster structures are developed. ( Ex < 10MeV ) Excitation of clusters’ relative motion (2hw) ( N : Quanta for relative motions ) Shell model + Cluster 2hw excitation of the seed of clusters in a ground state Cluster basis = N (Lowest arrowed) + N (Higher quanta) Cluster structure ++ N = N low N > N low