Carlo Broggini, INFN-Padova Nuclear Burning in Stars  (E star )  ( E ) = S(E) e –2   E -1 2       m  m   m   m 

Slides:



Advertisements
Similar presentations
The 26g Al(p, ) 27 Si Reaction at DRAGON Heather Crawford Simon Fraser University TRIUMF Student Symposium July 27, 2005.
Advertisements

 s(E) = S(E) e–2ph E-1 s Laboratory for Underground
$100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200.
$100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500.
Chapter 2-3. States and carrier distributions
$100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300.
Carlo Broggini, INFN-Padova Nuclear Burning in Stars (E star ) ( E ) = S(E) e –2 E -1 2 cm m m m m Astrophysical Factor Gamow Factor Reaction Rate(star)
Nuclear Burning in Stars (E star ) ( E ) = S(E) e –2 E -1 Reaction Rate(star) (E) (E) dE Gamow Peak Maxwell Boltzmann Extrap.Meas. LUNA results Men in.
LUNALUNA Nucleosintesi stellare (E star ) (E) = S(E)/E e –2 2 cm m m m m Fattore astrofisico Interazioni(stella) (E) (E) dE Picco di Gamow Maxwell Boltzmann.
$100 $400 $300$200$400 $200$100$100$400 $200$200$500 $500$300 $200$500 $100$300$100$300 $500$300$400$400$500.
NuPECC - Milan Present and future of Laboratory Underground Nuclear Astrophysics Alba Formicola - Status of the D(, ) 6 Li measurement -Status of.
$100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200.
Category 1 Category 2 Category 3 Category 4 Category.
Category Category Category Category Category.
$100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300.
JRA3 Eurotag report, Oct Eurotag Development of the European tagged photon facilities. Spokesperson: Ken Livingston, Glasgow Members: Glasgow, Bonn,
Noise Lecture 6.
Methods to directly measure non-resonant stellar reaction rates
How does a Beam of Light Travel?
Category Heading Category Heading Category Heading.
Underground Measurement of the 17O+p Reactions
LED Display. LED Typical LED forward bias voltage: 1.5 to 2.0 V Typical currents needed to light LED range from 2 to 15 mA.
1/03/09 De 89 à 98. 1/03/09 De 89 à 98 1/03/09 De 89 à 98.
EXAMPLE 2 Compare measures of dispersion The top 10 finishing times (in seconds) for runners in two men’s races are given. The times in a 100 meter dash.
Reminder n Please return Assignment 1 to the School Office by 13:00 Weds. 11 th February (tomorrow!) –The assignment questions will be reviewed in next.
Lecture 10 Energy production. Summary We have now established three important equations: Hydrostatic equilibrium: Mass conservation: Equation of state:
Stuttgart Dynamitron at Bucharest - Perspectives and New Activities
The LUNA experiment: direct measurement of thermonuclear cross sections of astrophysical interest Alessandra Guglielmetti Universita’ degli Studi di Milano.
Nuclear Fission vs. Fusion What is what????. Fission…what is it? Nuclear reaction OR radioactive decay Nucleus of an atom splits into smaller parts, neutrons.
 The sun has a very high temperature of degrees Fahrenheit. It is made of 70% Hydrogen, 28% helium, and 2% metals. It has no moons although it.
Chapter 30 Stars, Galaxies & Universe Characteristics of Stars What is a “Star”? A ball of gases that gives off a tremendous amount of electromagnetic.
Jarred Alexander Young February 12,  Beam Testing  LabView programs successfully upgraded  Results acquired from differing anode voltages ▪ Shows.
Nuclear astrophysics data needs for charged-particle reactions C. Iliadis (University of North Carolina)
Nuclear structure and fundamental interactions Solid state physics Material irradiation Micrometeorite research and study Astrophysics Nuclear astrophysics.
Math – What is a Function? 1. 2 input output function.
3-9 Nuclear Reactions: Fusion (11.5 pg ). The Sun is a giant nuclear furnace but unlike the nuclear reactors that we use on Earth the Sun uses.
ALNA- Accelerator Laboratory for Nuclear Astrophysics Underground Heide Costantini University of Notre Dame, IN, USA INFN, Genova, Italy.
Wavelength Intensity of emitted e/m radiation 6000K 2000K 1500K 1000K VIBGYOR Wien’s Displacement Law for black body radiation peak wavelength  1 / Temp.
 ( E ) = S(E) e –2   E -1 2      m  m   m   m   Reaction Rate(star)    (E)  (E) dE Gamow Peak  Maxwell Boltzmann.
 ( E ) = S(E) e –2   E -1 2       m  m   m   m   Reaction Rate(star)    (E)  (E) dE Gamow Peak  Maxwell Boltzmann.
Astroparticle physics 1. stellar astrophysics and solar neutrinos Alberto Carramiñana Instituto Nacional de Astrofísica, Óptica y Electrónica Tonantzintla,
The Sun. The sun is the nearest star to the Earth. The sun appears very large and bright. However, it is not especially large or bright when compared.
Experimental Nuclear Astrophysics: Key aspects & Open problems Marialuisa Aliotta School of Physics University of Edinburgh Nuclear Physics Autumn Retreat.
1/38 Laboratory Underground Nuclear Astrophysics The D( 4 He,  ) 6 Li reaction at LUNA and the Big Bang Nucleosynthesis Carlo Gustavino For the LUNA collaboration.
Constellations An group of stars the ancients originally named after mythical characters.
。 33 投资环境 3 开阔视野 提升竞争力 。 3 嘉峪关市概况 。 3 。 3 嘉峪关是一座新兴的工业旅游城市,因关得名,因企设市,是长城文化与丝路文化交 汇点,是全国唯一一座以长城关隘命名的城市。嘉峪关关城位于祁连山、黑山之间。 1965 年建市,下辖雄关区、镜铁区、长城区, 全市总面积 2935.
Chapter 1 Exploring Space Vocabulary. a group of stars that form a pattern in the sky constellation.
NUCLEAR REACTIONS OF ASTROPHYSICAL INTEREST AT LUNA D. Trezzi (for the LUNA collaboration) Università degli Studi di Milano | INFN – New Vistas in Low-Energy.
The LUNA experiment at Gran Sasso Laboratory: studying stars by going underground Alessandra Guglielmetti Università degli Studi di Milano and INFN, Milano,
The Stefan-Boltzmann Law
 s s 2ph = Z1Z2 m/E m = m1m2 / (m1+m2), E in keV
Why going underground g-background
The scientific program for the first five years of LUNA-MV
Laboratory for Underground Nuclear Astrophysics
Alessandra Guglielmetti Universita’ degli Studi di Milano and
Maxwell-Boltzmann velocity distribution
The D(4He,)6Li reaction at LUNA and the Big Bang Nucleosynthesis
Nuclear Reactions: Fusion
 s 2ph = Z1Z2 m/E m = m1m2 / (m1+m2), E in keV
Minnesota Institute for Astrophysics
Chapter 9 The Main Sequence.
Maxwell-Boltzmann velocity distribution
Maxwell-Boltzmann; Temperature and Catalysts
Constraints on Nuclear Fusion Reactions
“Review” for Topic 5 and 6.
الفعل ورد الفعل ♠ ♠ ♠ مجلس أبوظبي للتعليم منطقة العين التعليمية
NUCLEAR CHEMISTRY Unit 1 Notes.
Chap. 6 Stellar Energy Sources
 s(E) = S(E) e–2ph E-1 s Nuclear Burning in Stars s(Estar) s
Types of Errors And Error Analysis.
Presentation transcript:

Carlo Broggini, INFN-Padova Nuclear Burning in Stars  (E star )  ( E ) = S(E) e –2   E -1 2       m  m   m   m   Reaction Rate(star)    (E)  (E) dE Gamow Peak  Maxwell Boltzmann Extrap.Meas.  LUNA and the Sun Men in pits or wells sometimes see the stars…. Aristotle

luna

LUNA2 ( 400 kV) Voltage Range : kV Output Current: 1 mA 400 kV) Absolute Energy error ±300 eV Beam energy spread: <100 eV Long term stability (1 h) : 5 eV Terminal Voltage ripple: 5 Vpp Ge detector LUNA1 ( 50 kV ) Voltage Range : kV Output Current: 1 mA Beam energy spread: 20 eV Long term stability (8 h): Terminal Voltage ripple:

p + p  d + e + + e d + p  3 He +  3 He + 3 He   +2p 3 He + 4 He  7 Be +  7 Be+e -  7 Li +  + e 7 Be + p  8 B +  7 Li + p   8 B  2  + e + + e 84.7 %13.8 % % 0.02% pp chain

3 He( , g ) 7 Be Solar Neutrinos: 7 Be, 8 B BBN 7 Li Q=1.6 MeV prompt gammaCross section from prompt gamma down to 90 keV (CM energy) using 4 He beam on 3 He target radioactive decayActivation via off-line radioactive decay measurements of the 7 Be atoms collected in the beam catcher All with a final error < 5 %

  of 3 He( , g ) 7 Be down to 93 keV 7 Be ≈ prompt g S 34 (0) =  keV barn Δ Φ ( B ) reduced from 12% to 10% Δ Φ ( Be ) reduced from 9.4% to 5.5% (C. Pena Garay) Borexino-Kamland

14 N(p, g ) 15 O Q=7.3 MeV cno F  S 1,14 Globular Cluster Age S(0)= keV b (Ad98) S(0)= keV b (An99) E<1.2 MeV E<1.7 MeV

N+p O 1/2 + 7/2 + 5/2 + 3/2 + 3/2 - 5/2 + 1/2 + 1/2 - “High” energy: solid target + HpGe gamma spectrum of 14 N(p,  ) 15 O at 140 keV beam energy 14 N(p, g ) 15 O Low energy: gas target + BGO beam energy 90 keV

cno from the Sun Globular cluster age C yield in AGB stars S t (0)=1.61±0.18 keV b ‘clover’ study of the capture to the ground state: error on S t (0)= ±0.13 cno from the Sun solar core metallicity

2 H(α, g ) 6 Li Q=1.47 MeV 15 N(p, g ) 16 O Q=12.13 MeV (already started) 17 O(p, g ) 18 F Q=5.6 MeV 23 Na(p, g ) 24 Mg Q=11.7 MeV 22 Ne(p, g ) 23 Na Q=8.8 MeV 18 O(p, g ) 19 F Q=8.0 MeV 25 Mg(p, g ) 26 Al Q=6.3 MeV (almost completed) Rich program of Nuclear Astrophysics:

15 N(p, g ) 16 O

3 He( , g ) 7 Be: 14 N(p, g ) 15 O:  down to 70 keV (T=60 T 6 ) cno reduced by  2 with 8% error core metallicity Globular cluster age increased by Gy Higher C yield in AGB stars LUNA has shown that it is possible to measure  (E star ): 3 He ( 3 He,2p) 4 He, 2 H(p, g ) 3 He 3 He ( 3 He,2p) 4 He:  down to 16 keV no resonance within the solar Gamow Peak Δ Φ ( Be ) reduced from 9.4% to 5.5% 7 Be ≈ prompt g  down to 93 keV

INFN - Laboratori Nazionali del Gran Sasso D.Bemmerer,R.Bonetti,C.Broggini,F. Confortola,P.Corvisiero,H.Costantini, Z.Elekes, A.Formicola, Z. Fülöp, G.Gervino,A.Guglielmetti, C.Gustavino, G. Gyurky, G. Imbriani, M.Junker, A.Lemut, B.Limata, V.Lozza,M.Marta,R.Menegazzo, P.Prati, V.Roca, C.Rolfs, M.Romano, C.RossiAlvarez, O.Straniero,F.Strieder, E.Somorjai,F.Terrasi,H.P.Trautvetter INFN : Genova, LNGS, Milano, Napoli, Padova, Torino Inst.Physik mit Ionenstrahlen, Ruhr- Universität Bochum Forschungszentrum Dresden-Rossendorf Atomki Debrecen LUNA