SMNO.jursntnhfpub.Sept2012

Slides:



Advertisements
Similar presentations
Using Natural Resources By: table 1. Sand Sandy soils have different particles. Quartz are commonly found in sand. Feldspar is also in sand. Sandy soils.
Advertisements

Vocabulary Unit A Earth Science Howard Middle School.
Soil Water Relationships
Basic Rose Culture John & Mitchie Moe Master Rosarians Pacific Northwest District American Rose Society November 11, 2011 Soil & Water.
Soil Texture and Structure Chris Thoreau February 24, 2012.
Soils and FFA Land Judging Jim Lathem Georgia Agricultural Education Curriculum Office Georgia Department of Education July 2005.
Conceptual Aspects: Habitat Micro-organisms Bacteria, Fungi – both good and bad Viruses Macro-organisms Worms, Arthropods, Detrivores and Predators Plants.
Definition of Soil The outermost solid layer of the Earth
Chapter 16 Subgrade Materials. Components and Functions.
KLASIFIKASI LANDUSE Bahan Kajian MK. STELA - Landuse Planing Smno.jurtnh.fpubdes2013.
INFILTRASI DAN PENETRASI AIR DALAM TANAH. Infiltrasi Air : Masuknya air ke dalam tanah Faktor-faktor yang mempengaruhi: Tekstur tanah Kandungan-awal lengas.
Conceptual Aspects: Habitat Micro-organisms Bacteria, Fungi – both good and bad Viruses Macro-organisms Worms, Arthropods, Detrivores and Predators Plants.
Genomics Technology to Assessing Microbial Activity in the Environment.
CIRI-CIRI FISIKA TANAH
Bahan Kajian MK. Dasar Ilmu Tanah KTK & KETERSEDIAAN HARA Smno.agroekotek.fpub.nop2013.
PENGELOLAAN BAHAN ORGANIK TANAH Bahan Kajian MK. Dasar Ilmu Tanah smno.jurtnh.fpub.nop2013.
Bahan Kajian MK. Dasar Ilmu Tanah Smno.agroekotek.fpub.okt2013 REAKSI PERTUKARAN ION & KETERSEDIAAN HARA.
Chapter 2 Weathering & Soil
Texture Soil texture is determined by the size of the weathered rock particles it contains Sand – 0.05 – 2 mm, feels gritty Does not hold water well.
Soil Composition – What Dirt is Made of
Soil Texture and Textural Class
Soils in Construction (Engineering)
 Necessary materials: PowerPoint Guide Teacher Information!
Physical Properties of Soils GES175, Science of Soils.
Soil Texture Getting a feel for the soil!. Soil Texture Defined The relative proportions of the various size groups of individual soil grains (namely.
The Dirt on Soil.
SOIL PHYSICAL COMPONENTS “Getting to the root of the problem” sand silt clay air water Cation exchange tillage roots.
Arrianna Dawes Rising Star Academy 651  During this process in the…  First minute the measurement of the depth sand that settles at the bottom off.
Soils I. Importance of soil II. Soil structure A. Composition
Overview of Soil Properties for Crop Production By J.G. Mexal Department of Plant & Environmental Sciences New Mexico State University.
Soils Physical Properties Name______________ Date_________ Hour________.
SOILS More Than Just Dirt. What Is Soil? Soil is a layer that covers most of the land surface of the earth. Soil is what forests, fields and gardens grow.
Soil: More than just a bunch of dirt
Soil Structure. Soil Structure? ‘Arrangement of soil particles, pores and aggregates within a soil body’ Soil produces aggregates – clumps of soil that.
Amber Anderson Mba. Physical properties Texture Structure Color Bulk Density Infiltration Chemical properties Cation exchange capacity Buffering capacity.
InteractiveScienceTeacher.com Pre-test How many soil characteristics are there? Name them all. Tell me 2 things about each.
Properties of Soil Grade 4.
Canada’s Soil Regions Old Making Connections Textbook pages
SOIL TEXTURE GEOGRAPHY 6A
Experiment # 1 Grain Size Analysis Sieve Analysis.
Soil Texture. Different Types of Soils ZSand ZSilt ZClay.
Soil is Pieces of rocks and minerals (such as clay, silt, sand and gravel) Decayed parts of Living things Water Air.
Earth’s Changing Surface
333.T1 Model Agricultural Core Curriculum: Supplement University of California, Davis Influence of Texture on Soil Sand Sand is made up of small coarse.
The unknown ecosystem.  What is soil? What is it made of? Where do we get if from? What is your “definition” of soil.
Soil & Erosion.
Soil Formation and Composition EQ: How do you scientifically describe soil? How is soil formed?
Soil testing Volcano Dreaming Panel 4. Soil observation Place some soil between your thumb and forefinger Manipulate the soil to feel the texture The.
Introduction to Soils Carolina Medina Soil & Water Science Dept. University of Florida.
Conserving Resources Review. What is a material found in nature that is used by living things? 1.Humus 2.Loam 3.Resource 10 Seconds Remaining
Are these examples of weathering, erosion, or both?  1. Ice breaking rock  2. Wind breaking away and moving rock  3. A river moving sediment  4. Tree.
What is the best soil for growing plants? Loam soil that is made of almost equal parts of clay, sand, and silt is the best. This texture is important so.
Soil Classification Prof. Basuony El-Garhy
Components and Properties of AG 102. Agronomist refer to the origin as Parent Material PM is referred to as a geological formation (a layer of material.
Day 19 Objective You will learn about soil texture and composition in order to determine soil’s value as a resource and conservation measures. Warm-Up.
 Soil is the loose material, mostly made of minerals, where plants can grow.  Soil is made of air, water, minerals and organic matter.  Humus is a.
The reading is 7.38 mm. The reading is 7.72 mm.
Soil Formation and Composition.  I. Soil Formation –A. When bedrock is exposed, it weathers. –B. Particles of rock mix with other material. –C. Soil.
SMNO.jursntnhfpub.Sept2014
Soil Texture and Textural Class
Surface Water Hydrology Lecture 13: Infiltration
MEKANIKA TANAH I PERTEMUAN II PERMEABILITAS TANAH Oleh :
Using the Soil Triangle
Soil Texture.
Soil Texture.
Soil Water Balance Reading: Applied Hydrology Sections 4.1 and 4.2
Physical Properties of Soils
SOIL.
ચાલો માટી વિશે જાણીએ All About Soil.
What is soil? What is it made of? What’s in it?
Presentation transcript:

SMNO.jursntnhfpub.Sept2012 Bahan kajian pada MK DASAR ILMU TANAH AIR – LENGAS TANAH Disarikan oleh: SMNO.jursntnhfpub.Sept2012

CIRI-CIRI TANAH Tekstur Tanah Struktur Tanah Definition: relative proportions of various sizes of individual soil particles USDA classifications Sand: 0.05 – 2.0 mm Silt: 0.002 - 0.05 mm Clay: <0.002 mm Textural triangle: USDA Textural Classes Coarse vs. Fine, Light vs. Heavy Affects water movement and storage Struktur Tanah Definition: how soil particles are grouped or arranged Affects root penetration and water intake and movement

SEGITIGA TEKSTUR TANAH USDA Textural Triangle

Bulk Density (b) Typical values: 1.1 - 1.6 g/cm3 b = soil bulk density, g/cm3 Ms = mass of dry soil, g Vb = volume of soil sample, cm3 Typical values: 1.1 - 1.6 g/cm3 Particle Density (p) P = soil particle density, g/cm3 Vs = volume of solids, cm3 Typical values: 2.6 - 2.7 g/cm3

Porositas tanah () Nilai-nilai yang khas: 30 - 60%

AIR DALAM TANAH Kadar Air (Lengas) Tanah Mass water content (m) m = mass water content (fraction) Mw = mass of water evaporated, g (24 hours @ 105oC) Ms = mass of dry soil, g

Kadar air volumetrik (v) V = volumetric water content (fraction) Vw = volume of water Vb = volume of soil sample At saturation, V =  V = As m As = apparent soil specific gravity = b/w (w = density of water = 1 g/cm3) As = b numerically when units of g/cm3 are used Ekuivalen kedalaman air (d) d = volume of water per unit land area = (v A L) / A = v L d = equivalent depth of water in a soil layer L = depth (thickness) of the soil layer

Kadar air volumetrik & Kedalaman ekuivalen (cm3) Equivalent Depth (cm3) (g) (g)

Kadar air volumetrik & Kedalaman ekuivalen Soil Solids (Particles): 50% 0.50 in. 1 in. Very Large Pores: 15% (Gravitational Water) 0.15 in. Total Pore Space: 50% Medium-sized Pores: 20% (Plant Available Water) 0.20 in. Very Small Pores: 15% (Unavailable Water) 0.15 in.

Daya Simpan Air = Water-Holding Capacity of Soil Effect of Soil Texture Coarse Sand Silty Clay Loam Dry Soil Gravitational Water Water Holding Capacity Available Water Unavailable Water

POTENSIAL AIR TANAH DESKRIPSI Ukuran dari status energi air tanah Important because it reflects how hard plants must work to extract water Units of measure are normally bars or atmospheres Soil water potentials are negative pressures (tension or suction) Water flows from a higher (less negative) potential to a lower (more negative) potential

POTENSIAL AIR TANAH Komponen t = total potensial air tanah g = gravitational potential (force of gravity pulling on the water) m = matric potential (force placed on the water by the soil matrix – soil water “tension”) o = osmotic potential (due to the difference in salt concentration across a semi-permeable membrane, such as a plant root) Matric potential, m, normally has the greatest effect on release of water from soil to plants

Kurva pelepasan air tanah : Curve of matric potential (tension) vs. water content Less water  more tension At a given tension, finer-textured soils retain more water (larger number of small pores)

Potential Matriks dan Tekstur Tanah The tension or suction created by small capillary tubes (small soil pores) is greater that that created by large tubes (large soil pores). At any given matric potential coarse soils hold less water than fine-textured soils. Height of capillary rise inversely related to tube diameter

Kapasitas Lapang= Field Capacity (FC or fc) Soil water content where gravity drainage becomes negligible Soil is not saturated but still a very wet condition Traditionally defined as the water content corresponding to a soil water potential of -1/10 to -1/3 bar Titik Layu Permanen: Permanent Wilting Point (WP or wp) Soil water content beyond which plants cannot recover from water stress (dead) Still some water in the soil but not enough to be of use to plants Traditionally defined as the water content corresponding to -15 bars of SWP

Relasi-relasi Lengas Tanah Diunduh dari: Soil Water Phases - N. Sivakugan

Menghitung masa (atau bobot) dan volume dari tiga fase yang berbeda Va air Ma=0 Mt Vt Vv Notation M = mass or weight V = volume s = soil grains w = water a = air v = voids t = total Vw water Mw Vs soil Ms Diagram Fase Diunduh dari: Soil Water Phases - N. Sivakugan

Definisi Kadar air (w) merupakan ukuran air yang ada dalam tanah. soil water Vs Va Ma=0 Ms Mw Mt Vw Vv Vt X 100% Expressed as percentage. Range = 0 – 100+%. Phase Diagram Diunduh dari: Soil Water Phases - N. Sivakugan

Diunduh dari: Soil Water Phases - N. Sivakugan Definisi: Void ratio (e) is a measure of the void volume. soil air water Vs Va Ma=0 Ms Mw Mt Vw Vv Vt Phase Diagram Diunduh dari: Soil Water Phases - N. Sivakugan

Diunduh dari: Soil Water Phases - N. Sivakugan Definisi: Porosity (n) is also a measure of the void volume, expressed as a percentage. soil air water Vs Va Ma=0 Ms Mw Mt Vw Vv Vt X 100% Theoretical range: 0 – 100% Phase Diagram Diunduh dari: Soil Water Phases - N. Sivakugan

Derajat kejenuhan (S): persentase pori yang terisi air . Definisi Derajat kejenuhan (S): persentase pori yang terisi air . soil air water Vs Va Ma=0 Ms Mw Mt Vw Vv Vt X 100% Range: 0 – 100% Dry Saturated Phase Diagram Diunduh dari: Soil Water Phases - N. Sivakugan

Diunduh dari: Soil Water Phases - N. Sivakugan Contoh sederhana: Dalam ilustrasi ini: water air soil e = 1 n = 50% S = 50% Diunduh dari: Soil Water Phases - N. Sivakugan

Bobot Isi (m) adalah kerapatan tanah dalam kondisi apa adanya. Definisi Bobot Isi (m) adalah kerapatan tanah dalam kondisi apa adanya. soil air water Vs Va Ma=0 Ms Mw Mt Vw Vv Vt Units: t/m3, g/ml, kg/m3 Phase Diagram Diunduh dari: Soil Water Phases - N. Sivakugan

Definisi Saturated density (sat) is the density of the soil when the voids are filled with water. Submerged density (’) is the effective density of the soil when it is submerged. ’ = sat - w Diunduh dari: Soil Water Phases - N. Sivakugan

Kerapatan kering (d) : kerapatan tanah pada kondisi kering. Definisi Kerapatan kering (d) : kerapatan tanah pada kondisi kering. soil air water Vs Va Ma=0 Ms Mw Mt Vw Vv Vt Units: t/m3, g/ml, kg/m3 Diagram Fase Diunduh dari: Soil Water Phases - N. Sivakugan

Diunduh dari: Soil Water Phases - N. Sivakugan Definisi Bulk, saturated, dry and submerged unit weights () are defined in a similar manner. Here, use weight (kN) instead of mass (kg).  = g kg/m3 N/m3 m/s2 Berat jenis (kerapatan jenis) partikel tanah (Gs) biasanya berkisar antara 2.6 dan 2.8. Diunduh dari: Soil Water Phases - N. Sivakugan

Massa = Kerapatan x Volume Hubungan Fase Perhatikan fraksi tanah dimana Vs = 1. The other volumes can be obtained from the previous definitions. air e Se water Sew The masses can be obtained from: 1 soil Gsw Massa = Kerapatan x Volume volumes masses Diagram Fase Diunduh dari: Soil Water Phases - N. Sivakugan

Diunduh dari: Soil Water Phases - N. Sivakugan Hubungan Fase Dari definisi sebelumnya: soil air water 1 Gsw Sew Se e Phase Diagram Diunduh dari: Soil Water Phases - N. Sivakugan

Hubungan Fase soil air water 1 Gsw Sew Se e Diagram Fase Diunduh dari: Soil Water Phases - N. Sivakugan

AIR TANAH TERSEDIA Definisi: Water held in the soil between field capacity and permanent wilting point “Tersedia” untuk digunakan oleh tanaman Kapasitas Air Tersedia: Available Water Capacity (AWC) AWC = fc - wp Units: depth of available water per unit depth of soil, “unitless” (in/in, or mm/mm) Measured using field or laboratory methods (described in text)

Sifat Hidraulik Tanah & Tekstur Tanah

Fraksi air-tersedia yang hilanbg dari tanah (fd) (fc - v) = soil water deficit (SWD) v = current soil volumetric water content Fraksi air-tersedia yang tertinggal (fr) (v - wp) = soil water balance (SWB)

Total Air Tersedia: Total Available Water (TAW) TAW = (AWC) (Rd) TAW = total available water capacity within the plant root zone, (inches) AWC = available water capacity of the soil, (inches of H2O/inch of soil) Rd = depth of the plant root zone, (inches) If different soil layers have different AWC’s, need to sum up the layer-by-layer TAW’s TAW = (AWC1) (L1) + (AWC2) (L2) + . . . (AWCN) (LN) - L = thickness of soil layer, (inches) - 1, 2, N: subscripts represent each successive soil layer

Gravity vs. Capillarity Horizontal movement due to capillarity Vertical movement due largely to gravity

Infiltrasi Air : Masuknya air ke dalam tanah Faktor-faktor yang mempengaruhi: Tekstur tanah Kandungan-awal lengas tanah Kerak permukaan (structure, etc.) Soil cracking Praktek pengolahan tanah Metode aplikasi air (e.g., Basin vs. Furrow) Suhu air.

Infiltrasi Kumulatif vs. Tekstur Tanah

Laju Infiltrasi vs. Waktu Untuk tekstur tanah yang berbeda

Laju Infiltrasi dan Tekstur Tanah

Laju infiltrasi vs. Laju irigasi konstan

Laju infiltrasi vs. Laju irigasi beragam

Kedalaman Penetrasi Air Can be viewed as sequentially filling the soil profile in layers Deep percolation: water penetrating deeper than the bottom of the root zone Pencucian : transport of chemicals from the root zone due to deep percolation

Simpanan lengas (air) dalam profil tanah yang berlapis-lapis

AIR TANAH Kekuatan ikatan antara molekul air dengan partikel tanah dinyatakan dengan TEGANGAN AIR TANAH. Ini merupakan fungsi dari gaya-gaya adesi dan kohesi di antara molekul - molekul air dan partikel tanah Kohesi Adesi H2O Partikel tanah Air terikat Air bebas

Air Tersedia untuk pertumbuhan tanaman

Status Air Tanah Perubahan status air dalam tanah, mulai dari kondisi jenuh hingga titik layu Jenuh Kap. Lapang Titik layu Padatan Pori 100g air 40g tanah jenuh air 100g 20g udara kapasitas lapang 100g 10 g udara koefisien layu 100g 8g udara koefisien higroskopis

TEGANGAN & KADAR AIR PERHATIKANLAH proses yang terjadi kalau tanah basah dibiarkan mengering. Bagan berikut melukiskan hubungan antara tebal lapisan air di sekeliling partikel tanah dengan tegangan air Bidang singgung tanah dan air Koef. Koef. Kapasitas padatan tanah higroskopis layu lapang 10.000 atm 31 atm 15 atm 1/3 atm 10.000 atm Mengalir krn gravitasi Tegangan air 1/3 atm tebal lapisan air

JUMLAH AIR DALAM TANAH The amount of soil water is usually measured in terms of water content as percentage by volume or mass, or as soil water potential. Water content does not necessarily describe the availability of the water to the plants, nor indicates, how the water moves within the soil profile. The only information provided by water content is the relative amount of water in the soil. Soil water potential, which is defined as the energy required to remove water from the soil, does not directly give the amount of water present in the root zone either. Therefore, soil water content and soil water potential should both be considered when dealing with plant growth and irrigation. The soil water content and soil water potential are related to each other, and the soil water characteristic curve provides a graphical representation of this relationship.

Kurva tegangan - kadar air tanah bertekstur lempung TEGANGAN vs kadar air Kurva tegangan - kadar air tanah bertekstur lempung Air kapiler Air Air tersedia higros- kopis Lambat tersedia Cepat tersedia Air gravitasi Zone optimum Tegangan air, bar 31 Koefisien higroskopis Koefisien layu Kapasitas lapang 0.1 Kap. Lapang maksimum persen air tanah

Hubungan antara kadar air tanah dan tegangan air tanah untuk tekstur lempung

STRUKTUR & CIRI POLARITAS Molekul air mempunyai dua ujung, yaitu ujung oksigen yg elektronegatif dan ujung hidrogen yang elektro-positif. Dalam kondisi cair, molekul-molekul air saling bergandengan membentuk kelompok-kelompok kecil tdk teratur. Ciri polaritas ini menyebabkan plekul air tertarik pada ion-ion elektrostatis. Kation-kation K+, Na+, Ca++ menjadi berhidrasi kalau ada molekul air, membentuk selimut air, ujung negatif melekat kation. Permukaan liat yang bermuatan negatif, menarik ujung positif molekul air. Kation hidrasi Tebalnya selubung air tgt pd rapat muatan pd per- mukaan kation. Rapat muatan = Selubung air muatan kation / luas permukaan

STRUKTUR & CIRI KOHESI vs. ADHESI IKATAN HIDROGEN Atom hidrogen berfungsi sebagai titik penyambung (jembatan) antar molekul air. Ikatan hidrogen inilah yg menyebabkan titik didih dan viskositas air relatif tinggi KOHESI vs. ADHESI Kohesi: ikatan hidrogen antar molekul air Adhesi: ikatan antara molekul air dengan permukaan padatan lainnya Melalui kedua gaya-gaya ini partikel tanah mampu menahan air dan mengendalikan gerakannya dalam tanah TEGANGAN PERMUKAAN Terjadinya pada bidang persentuhan air dan udara, gaya kohesi antar molekul air lebih besra daripada adhesi antara air dan udara. Udara Permukaan air-udara air

ENERGI AIR TANAH Retensi dan pergerakan air tanah melibatkan energi, yaitu: Energi Potensial, Energi Kinetik dan Energi Elektrik. Selanjutnya status energi dari air disebut ENERGI BEBAS, yang merupakan PENJUMLAHAN dari SEMUA BENTUK ENERGI yang ada. Air bergerak dari zone air berenergi bebas tinggi (tanah basah) menuju zone air berenergi bebas rendah (tanah kering). Gaya-gaya yg berpengaruh Gaya matrik: tarikan padatan tanah (matrik) thd molekul air; Gaya osmotik: tarikan kation-kation terlarut thd molekul air Gaya gravitasi: tarikan bumi terhadap molekul air tanah. Potensial air tanah Ketiga gaya tersebut di atas bekerja bersama mempengaruhi energi bebas air tanah, dan selanjutnya menentukan perilaku air tanah, ….. POTENSIAL TOTAL AIR TANAH (PTAT) PTAT adalah jumlah kerja yg harus dilakukan untuk memindahkan secara berlawanan arah sejumlah air murni bebas dari ketinggian tertentu secara isotermik ke posisi tertentu air tanah. PTAT = Pt = perbedaan antara status energi air tanah dan air murni bebas Pt = Pg + Pm + Po + ………………………… ( t = total; g = gravitasi; m = matrik; o = osmotik)

Hubungan potensial air tanah dengan energi bebas Energi bebas naik bila air tanah berada pada letak ketinggian yg lebih tinggi dari titik baku pengenal (referensi) + Poten-sial positif Energi bebas dari air murni Potensial tarikan bumi Menurun karena pengaruh osmotik Potensial osmotik (hisapan) Poten-sial negatif Potensial matrik (hisapan) - Menurun karena pengaruh matrik Energi bebas dari air tanah

POTENSIAL AIR TANAH POTENSIAL TARIKAN BUMI = Potensial gravitasi Pg = G.h dimana G = percepatan gravitasi, h = tinggi air tanah di atas posisi ketinggian referensi. Potensial gravitasi berperanan penting dalam menghilangkan kelebihan air dari bagian atas zone perakaran setelah hujan lebat atau irigasi Potensial matrik dan Osmotik Potensial matrik merupakan hasil dari gaya-gaya jerapan dan kapilaritas. Gaya jerapan ditentukan oleh tarikan air oleh padatan tanah dan kation jerapan Gaya kapilaritas disebabkan oleh adanya tegangan permukaan air. Potensial matriks selalu negatif Potensial osmotik terdapat pd larutan tanah, disebabkan oleh adanya bahan-bahan terlarut (ionik dan non-ionik). Pengaruh utama potensial osmotik adalah pada serapan air oleh tanaman Hisapan dan Tegangan Potensial matrik dan osmotik adalah negatif, keduanya bersifat menurunkan energi bebas air tanah. Oleh karena itu seringkali potensial negatif itu disebut HISAPAN atau TEGANGAN. Hisapan atau Tegangan dapat dinyatakan dengan satuan-satuan positif. Jadi padatan-tanah bertanggung jawab atas munculnya HISAPAN atau TEGANGAN.

Cara Menyatakan Tegangan Energi Tegangan: dinyatakan dengan “tinggi (cm) dari satuan kolom air yang bobotnya sama dengan tegangan tsb”. Tinggi kolom air (cm) tersebut lazimnya dikonversi menjadi logaritma dari sentimeter tinggi kolom air, selanjutnya disebut pF. Tinggi unit Logaritma Bar Atmosfer kolom air (cm) tinggi kolom air (pF) 10 1 0.01 0.0097 100 2 0.1 0.0967 346 2.53 0.346 1.3 1000 3 1 10000 4 10 9.6749 15849 4.18 15.8 15 31623 4.5 31.6 31 100.000 5 100 96.7492

KANDUNGAN AIR DAN TEGANGAN KURVA ENERGI - LENGAS TANAH Tegangan air menurun secara gradual dengan meningkatnya kadar air tanah. Tanah liat menahan air lebih banyak dibanding tanah pasir pada nilai tegangan air yang sama Tanah yang Strukturnya baik mempunyai total pori lebih banyak, shg mampu menahan air lebih banyak Pori medium dan mikro lebih kuat menahan air dp pori makro Tegangan air tanah, Bar 10.000 Liat Lempung Pasir 0.01 10 Kadar air tanah, % 70

Tekstur tanah dan air tersedia

Hubungan antara kadar air tanah dengan tegangan air tanah

Jelaskan bagaimana tektur tanah mempengaruhi jumlah air tersedia bagi tanaman? Sebanyak 250 kata

Jelaskan tanah-tanah yang tekturnya halus mampu menahan lebih banyak air dibandingkan dgn tanah-tanah yang teksturnya kasar? Sebanyak 250 kata

Kapasitas air tersedia dalam tanah yang teksturnya berbeda-beda

Gerakan Air Tanah Tidak Jenuh Gerakan tidak jenuh = gejala kapilaritas = air bergerak dari muka air tanah ke atas melalui pori mikro. Gaya adhesi dan kohesi bekerja aktif pada kolom air (dalam pri mikro), ujung kolom air berbentuk cekung. Perbedaan tegangan air tanah akan menentukan arah gerakan air tanah secara tidak jenuh. Air bergerak dari daerah dengan tegangan rendah (kadar air tinggi) ke daerah yang tegangannya tinggi (kadar air rendah, kering). Gerakan air ini dapat terjadi ke segala arah dan berlangsung secara terus-menerus. Pelapisan tanah berpengaruh terhadap gerakan air tanah. Lapisan keras atau lapisan kedap air memperlambat gerakan air Lapisan berpasir menjadi penghalang bagi gerakan air dari lapisan yg bertekstur halus. Gerakan air dlm lapisan berpasir sgt lambat pd tegangan

Gerakan Jenuh (Perkolasi) Air hujan dan irigasi memasuki tanah, menggantikan udara dalam pori makro - medium - mikro. Selanjutnya air bergerak ke bawah melalui proses gerakan jenuh dibawah pengaruh gaya gravitasi dan kapiler. Gerakan air jenuh ke arah bawah ini berlangsung terus selama cukup air dan tidak ada lapisan penghalang Lempung berpasir Lempung berliat cm 0 15 mnt 4 jam 30 60 90 1 jam 24 jam 120 24 jam 48 jam 150 30 cm 60 cm Jarak dari tengah-tengah saluran, cm

Pola Penetrasi dan Pergerakan Air pada tanah Berpasir dan tanah Lempung-liat

PERKOLASI Jumlah air perkolasi Faktor yg berpengaruh: 1. Jumlah air yang ditambahkan 2. Kemampuan infiltrasi permukaan tanah 3. Daya hantar air horison tanah 4. Jumlah air yg ditahan profil tanah pd kondisi kapasitas lapang Keempat faktor di atas ditentukan oleh struktur dan tekstur tanah Tanah berpasir punya kapasitas ilfiltrasi dan daya hantar air sangat tinggi, kemampuan menahan air rendah, shg perkolasinya mudah dan cepat Tanah tekstur halus, umumnya perkolasinya rendah dan sangat beragam; faktor lain yg berpengaruh: 1. Bahan liat koloidal dpt menyumbat pori mikro & medium 2. Liat tipe 2:1 yang mengembang-mengkerut sangat berperan

LAJU GERAKAN AIR TANAH Kecepatan gerakan air dlm tanah dipengaruhi oleh dua faktor: 1. Daya dari air yang bergerak 2. Hantaran hidraulik = Hantaran kapiler = daya hantar i = k.f dimana i = volume air yang bergerak; f = daya air yg bergerak dan k = konstante. Daya air yg bergerak = daya penggerak, ditentukan oleh dua faktor: 1. Gaya gravitasi, berpengaruh thd gerak ke bawah 2. Selisih tegangan air tanah, ke semua arah Gerakan air semakin cepat kalau perbedaan tegangan semakin tinggi. Hantaran hidraulik ditentukan oleh bbrp faktor: 1. Ukuran pori tanah 2. Besarnya tegangan untuk menahan air Pada gerakan jenuh, tegangan airnya rendah, shg hantaran hidraulik berbanding lurus dengan ukuran pori Pd tanah pasir, penurunan daya hantar lebih jelas kalau terjadi penurunan kandungan air tanah Lapisan pasir dlm profil tanah akan menjadi penghalang gerakan air tidak jenuh

Gerakan air tanah dipengaruhi oleh kandungan air tanah Penetrasi air dari tnh basah ke tnh kering (cm) 18 Tanah lembab, kadar air awal 29% Tanah lembab, kadar air awal 20.2% Tanah lembab, kadar air awal 15.9% 26 156 Jumlah hari kontak, hari Sumber: Gardner & Widtsoe, 1921.

Pengukuran Air Tanah Metode Gravimetrik Mengukur kandungan massa air (m) Take field samples  weigh  oven dry  weigh Advantages: accurate; Multiple locations Kelemahan: memerlukan tenaga dan waktu Metode Perasaan: Feel and appearance Take field samples and feel them by hand Advantages: low cost; Multiple locations Disadvantages: experience required; Not highly accurate

Pengukuran Air Tanah Pencaran neutron (attenuation) Measures volumetric water content (v) Attenuation of high-energy neutrons by hydrogen nucleus Advantages: samples a relatively large soil sphere repeatedly sample same site and several depths accurate Disadvantages: high cost instrument radioactive licensing and safety not reliable for shallow measurements near the soil surface Konstante dielektrik A soil’s dielectric constant is dependent on soil moisture Time domain reflectometry (TDR) Frequency domain reflectometry (FDR) Primarily used for research purposes at this time

Pengukuran Air Tanah: Neutron Attenuation

Pengukuran Air Tanah Tensiometer Electrical resistance blocks Measure soil water potential (tension) Practical operating range is about 0 to 0.75 bar of tension (this can be a limitation on medium- and fine-textured soils) Electrical resistance blocks Tend to work better at higher tensions (lower water contents) Thermal dissipation blocks Require individual calibration

Tensiometer untuk mengukur potensial air tanah Water Reservoir Variable Tube Length (12 in- 48 in) Based on Root Zone Depth Porous Ceramic Tip Vacuum Gauge (0-100 centibar)

Electrical Resistance Blocks & Meters