Ursula van Rienen, Universität Rostock, FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics Scattering Parameter Calculation for.

Slides:



Advertisements
Similar presentations
1 A B C
Advertisements

Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
ALGEBRA Number Walls
David Burdett May 11, 2004 Package Binding for WS CDL.
CALENDAR.
HOM Coupler Development for SPL
© 2010 UNIVERSITÄT ROSTOCK | FAKULTÄT INFORMATIK UND ELEKTROTECHNIK HOM coupler modelling for SPL H.-W. Glock Universität Rostock - Institut.
7/19/2002 Kenneth John Webb Page 1 COMPARING EMISSION MEASUREMENTS IN A REVERBERATION CHAMBER AND A SEMI-ANECHOIC CHAMBER By Kenneth John Webb Principal.
Break Time Remaining 10:00.
Factoring Quadratics — ax² + bx + c Topic
PP Test Review Sections 6-1 to 6-6
CLIC-ACE, 20 June 2007 Alexej Grudiev, CLIC main linac structure optimization. CLIC main linac accelerating structure CLIC_G Alexej Grudiev.
MM4A6c: Apply the law of sines and the law of cosines.
Dual mode bph6 bph TM F TM R TE R TE F TM F TM R.
Copyright © 2012, Elsevier Inc. All rights Reserved. 1 Chapter 7 Modeling Structure with Blocks.
Adding Up In Chunks.
Frascati, 28 Maggio 2003 Accelerator Physics and Design Working Group Summary 2/2 O. Napoly.
1 TSD-160 Introduction to Network Analyzers and Error Correction Doug Rytting 4804 Westminster Place Santa Rosa, CA
Before Between After.
: 3 00.
5 minutes.
Converting a Fraction to %
Clock will move after 1 minute
PSSA Preparation.
Chapter 2 Tutorial 2nd & 3rd LAB.
1 Chapter 13 Nuclear Magnetic Resonance Spectroscopy.
Select a time to count down from the clock above
1.step PMIT start + initial project data input Concept Concept.
30 th September 2004 High Power RF Couplers James Rogers High Power RF Couplers ELSRF Daresbury Laboratory.
EMMA Cavity Update Emma Wooldridge 27/02/07. Requirements Initial Design Cavity Options & Optimisation Available Designs Future Work.
Slim crab cavity development Luca Ficcadenti, Joachim Tuckmantel CERN – Geneva LHC-CC11, 5th LHC Crab Cavity Workshop.
Tesla Meeting Frascati 27/05/03 C. Magne Cold BPM for TTF2 Tesla prototype - low beam impedance - cooling to 2K without strain - Low beam coupling impedance:
© 2010 UNIVERSITÄT ROSTOCK | FAKULTÄT INFORMATIK UND ELEKTROTECHNIK Q ext estimations for the "Broad-Hook"-HOM coupler H.-W. Glock Universität.
Zenghai Li SLAC National Accelerator Laboratory LHC-CC13 CERN, December 9-11, 2013 HOM Coupler Optimization & RF Modeling.
LOLA setup simulated LOLA measurement*: no transverse beam dimensions imaging: entrance-LOLA to OTR simulated LOLA measurement*: gaussian transverse shape.
704MHz Warm RF Cavity for LEReC Binping Xiao Collider-Accelerator Department, BNL July 8, 2015 LEReC Warm Cavity Review Meeting  July 8, 2015.
Friday meeting Nawin Juntong Halloween σ z = 1 mmσ z = 0.7 mmσ z = 0.3 mm ECHO 2D ABCI Δ (%) ECHO 2D ABCIΔ (%) ECHO 2D ABCI Δ (%) TESLA k L [V/pC]
Study of Absorber Effectiveness in the ILC Main Linacs K. Bane, C. Nantista and C. Adolphsen SLAC, March 26, 2010 Goal: Compute the HOM monopole losses.
CLIC crab cavity design Praveen Ambattu 24/08/2011.
1 Al Moretti, APC, Fermilab MAP- Winter Meeting February 28 - March 4, 2011 TJNAF Newport News, VA.
Sensitivity of HOM Frequency in the ESS Medium Beta Cavity Aaron Farricker.
TESLA DAMPING RING RF DEFLECTORS DESIGN F.Marcellini & D. Alesini.
Cavity BPM Simulations A. Liapine. Analysis of the Existing BPMs BINP KEK.
Marcel Schuh CERN-BE-RF-LR CH-1211 Genève 23, Switzerland 3rd SPL Collaboration Meeting at CERN on November 11-13, 2009 Higher.
Update on LHC 800MHz Crab Cavity Conceptual Design Liling Xiao, Zenghai Li Advanced Computations Department, SLAC Presented at LARP-CM12, April 9, 2009.
HOMSC Fermilab HOM Couplers for CERN SPL Cavities K. Papke, F. Gerick, U. van Rienen 1 Work supported by the Wolfgang-Gentner-Programme.
Crab Cavity Study with GDFIDL Narong Chanlek and Roger Jones 20/12/06.
Click to edit Master subtitle style 1 Reconstruction of HOM spectrum for XFEL 3 rd Harmonic module by Generalised Scattering Matrix technique. Nirav Joshi,
HOMs in the TESLA 9-cell cavity HOMs in the XFEL and ILC Rainer Wanzenberg SPL HOM workshop CERN, June 25 – 26, 2009.
ICFA Workshop on High Order Modes in Superconducting Cavities Batavia, IL, USA, 14 th – 16 th of July 2014 Thomas Flisgen, Johann Heller and Ursula van.
Dr Ian Shinton Researcher HEP group Manchester, Cockcroft Institute Daresbury.
The Cockcroft Institute and The University of Manchester
XFEL beamline loads and HOM coupler for CW
Manchester University Christmas talk 04/01/2010
LHC Crab Cavity Conceptual Design at SLAC
WP10.5: HOM Distribution Task 2 – Presentation 2.
800 MHz 2-Cavity module simulations
Work summary in 2016 Hongjuan Zheng CEPC SRF WG Meeting
Update of CLIC accelerating structure design
HOM coupler design ---loop type v.1
Horn Antenna( at X band) with Waveguide port
RF modes for plasma processing
SRF Cavity Designs for the International Linear Collider*
CEPC Main Ring Cavity Design with HOM Couplers
Beamline Absorber Study Using T3P
Beam Position Measurements in TTF Cavities
Erk Jensen Jacek Sekutowicz Ulla van Rienen
Accelerator Physics Particle Acceleration
Presentation transcript:

Ursula van Rienen, Universität Rostock, FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics Scattering Parameter Calculation for the 2x7 Superstructure TESLA Collaboration Meeting INFN Frascati May 26-28, 2003 Karsten Rothemund, Dirk Hecht, Ulla van Rienen

Ursula van Rienen, Universität Rostock, FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics 2x7-Superstructure 7 Cell TESLA Cavity HOM-Coupler Input-Coupler Images: I.Ibendorf Radius Adapter

Ursula van Rienen, Universität Rostock, FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics 2x7-Superstructure Images: I.Ibendorf Rotation (couplers) Shift of reference planes (MAFIA simulation has tubes on both sides)

Ursula van Rienen, Universität Rostock, FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics Radius Adaptor 57 mm 39 mm f = 1.5 – 3.0 GHz: TTF beam pipe superstructure TE 11 (deg.) TM 01 TE 21 (deg.)

Ursula van Rienen, Universität Rostock, FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics HOM-Input-Coupler antenna cone shape as in 9 cell HOM coupler (no data available in drawing) Geometry data taken from drawing „Formteil F“ ( /D.001),[1] [1] coutesy DESY

Ursula van Rienen, Universität Rostock, FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics HOM-Coupler (HOM 2 + HOM 3) HOM 2 HOM 3HOM 1 Input rotate HOM 3 shift planes 27.4 mm

Ursula van Rienen, Universität Rostock, FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics 7 Cell TESLA Cavity f= GHz TE11 TM01 TE21 Plot: MWS, simulation: MAFIA, 2D, time domain f/GHz |S..|/dB f/GHz |S..|/dB

Ursula van Rienen, Universität Rostock, FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics Analytical Sections Rotation between HOM-Couplers Rotate reference frame of dipole and quadrupole modes length of section is 0 Wave Guide (neg. and pos.) shift reference plane of cavity shift HOM 3 to correct position

Ursula van Rienen, Universität Rostock, FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics Subsections SubsectionPort-Modes# of this type HOM-Input-coupler HOM coupler TESLA cavity Plane shift cavity Shift of HOM Rotation Radius adaptor Total number of subsections:17 Total number of modes = S-matrix dimension:174 (to be computed for each frequency point)

Ursula van Rienen, Universität Rostock, FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics CSC-Computation Calculation of overall S-matrix open ports: beam pipe, 3x HOM-, 1x Input-coupler 1500 values computed in GHz frequency range shown here: GHz (3 rd dipole passband) 481 frequency-points + interpolation S-values of 7-cell cavity f/GHz |S..|/dB

Ursula van Rienen, Universität Rostock, FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics Results Coupling between HOM1 and HOM2 to beam pipe modes HOM1 HOM2 downstream beam pipe upstream beam pipe f/GHz |S..|/dB f/GHz |S..|/dB

Ursula van Rienen, Universität Rostock, FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics Results Coupling between HOM couplers Coupling between Input-coupler and beam pipe modes f/GHz |S..|/dB f/GHz |S..|/dB

Ursula van Rienen, Universität Rostock, FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics Timing S-Parameter CST-MicrowaveStudio TM (2.4 GHz Pentium 4, 4GB RAM): HOM-Input-Coupler: 316,160 mesh points (20 lines/lambda), 5 beam pipe modes + 2 koaxial modes Total computation time: 100 h (12 runs) HOM-Coupler: 178,920 mesh points (20 lines/lambda), 5 beampipe modes + 1 koaxial mode Total computation time: 24 h (11 runs) MAFIA (SUN Enterprise, 400 MHz, 4GB RAM): TESLA 7 cell cavity: 2D-geometry (rz) 31,158 mesh points Total computation time: 2h + 6.5h h

Ursula van Rienen, Universität Rostock, FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics Timing CSC CSC: platform: Mathematica subsections 5 modes in structure dimension of matrix: frequency points, 2.46 – 2.58 GHz 430 s on Pentium 3 (1 GHz, 512 MB RAM)

Ursula van Rienen, Universität Rostock, FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics Summary S-parameter of 2x7 TESLA-Superstructure have been calculated (an open structure) with CSC 5 modes have been considered in the structure S-parameter of subsections were computed with CST-MicrowaveStudio TM (coupler sections, 3D) MAFIA (TESLA cavity, 2D-rz-geometry) analytically (shifting planes, rotation) some exemplary coupling parameters have been presented computation times for S-parameters of subsections in order of days additional computation times whole structure then in the order of minutes parameter tuning (e.g. rotation angles, distances) possible