Ir. I Nyoman Setiawan, MT VARIABEL ACAK DAN EKSPEKTASI (Random Variable and Expectation) 1. Sheldon M Ross, Introduction Probability and Statistics for.

Slides:



Advertisements
Similar presentations
PROBABILITY DISTRIBUTION BUDIYONO 2011 (distribusi peluang)
Advertisements

Continuous Random Variables Chapter 5 Nutan S. Mishra Department of Mathematics and Statistics University of South Alabama.
BAB V FUNGSI VARIABEL ACAK Ekspektasi dan Momen.
Peubah Acak Kontinu Pertemuan 09 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
1 Pertemuan 07 Variabel Acak Diskrit dan Kontinu Matakuliah: I Statistika Tahun: 2008 Versi: Revisi.
Engineering Statistics ECIV 2305 Chapter 2 Random Variables.
Use of moment generating functions. Definition Let X denote a random variable with probability density function f(x) if continuous (probability mass function.
Continuous Random Variable (1). Discrete Random Variables Probability Mass Function (PMF)
Review of Basic Probability and Statistics
Engineering Statistics ECIV 2305 Section 2.3 The Expectation of a Random Variable.
Continuous Random Variables. For discrete random variables, we required that Y was limited to a finite (or countably infinite) set of values. Now, for.
Stochastic Processes Dr. Talal Skaik Chapter 10 1 Probability and Stochastic Processes A friendly introduction for electrical and computer engineers Electrical.
Probability Theory Part 2: Random Variables. Random Variables  The Notion of a Random Variable The outcome is not always a number Assign a numerical.
CSE 221: Probabilistic Analysis of Computer Systems Topics covered: Discrete random variables Probability mass function Distribution function (Secs )
Assignment 2 Chapter 2: Problems  Due: March 1, 2004 Exam 1 April 1, 2004 – 6:30-8:30 PM Exam 2 May 13, 2004 – 6:30-8:30 PM Makeup.
Statistics Lecture 8. Last day/Today: Discrete probability distributions Assignment 3: Chapter 2: 44, 50, 60, 68, 74, 86, 110.
1 Pertemuan 09 Peubah Acak Kontinu Matakuliah: I0134 – Metode Statistika Tahun: 2007.
TRANFORMASI PEUBAH ACAK DENGAN FUNGSI PAMBANGKIT MOMEN
1 Pertemuan 07 Peubah Acak Diskrit Matakuliah: I0134 -Metode Statistika Tahun: 2007.
CSE 221: Probabilistic Analysis of Computer Systems Topics covered: Continuous random variables Uniform and Normal distribution (Sec. 3.1, )
Probability and Statistics Review
A random variable that has the following pmf is said to be a binomial random variable with parameters n, p The Binomial random variable.
2. Random variables  Introduction  Distribution of a random variable  Distribution function properties  Discrete random variables  Point mass  Discrete.
The moment generating function of random variable X is given by Moment generating function.
1 Pertemuan 8 Variabel Acak-2 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.
Ya Bao Fundamentals of Communications theory1 Random signals and Processes ref: F. G. Stremler, Introduction to Communication Systems 3/e Probability All.
1 Pertemuan 05 Peubah Acak Kontinu dan Fungsi Kepekatannya Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi.
CSE 221: Probabilistic Analysis of Computer Systems Topics covered: Discrete time Markov chains (Sec. 7.1)
1 CS 6910 – Pervasive Computing Spring 2007 Section 2 (Ch.2): Probability, Statistics, and Traffic Theories Prof. Leszek Lilien Department of Computer.
Chapter 21 Random Variables Discrete: Bernoulli, Binomial, Geometric, Poisson Continuous: Uniform, Exponential, Gamma, Normal Expectation & Variance, Joint.
Sampling Distributions  A statistic is random in value … it changes from sample to sample.  The probability distribution of a statistic is called a sampling.
CIS 2033 based on Dekking et al. A Modern Introduction to Probability and Statistics, 2007 Instructor Longin Jan Latecki Chapter 7: Expectation and variance.
Beberapa Distribusi Khusus
Statistics for Engineer Week II and Week III: Random Variables and Probability Distribution.
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-1 2nd Lesson Probability and Sampling Distributions.
Functions of Random Variables. Methods for determining the distribution of functions of Random Variables 1.Distribution function method 2.Moment generating.
Probability and Statistics Dr. Saeid Moloudzadeh Random Variables/ Distribution Functions/ Discrete Random Variables. 1 Contents Descriptive.
Lecture 14 Prof. Dr. M. Junaid Mughal Mathematical Statistics 1.
Math 4030 – 6a Joint Distributions (Discrete)
Random Variables. Numerical Outcomes Consider associating a numerical value with each sample point in a sample space. (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
Chapter 3 Discrete Random Variables and Probability Distributions  Random Variables.2 - Probability Distributions for Discrete Random Variables.3.
Continuous Random Variable (1) Section Continuous Random Variable What is the probability that X is equal to x?
Section 5 – Expectation and Other Distribution Parameters.
Chapter 5 Joint Probability Distributions and Random Samples  Jointly Distributed Random Variables.2 - Expected Values, Covariance, and Correlation.3.
Random Variables By: 1.
Probability Distribution for Discrete Random Variables
Peubah Acak Diskrit Pertemuan 07
Statistics Lecture 19.
Lecture 3 B Maysaa ELmahi.
Unit 13 Normal Distribution
STAT 311 REVIEW (Quick & Dirty)
Review of Descriptive Statistics
Cumulative distribution functions and expected values
Probability for Machine Learning
Random Variables and their Properties
ETM 607 – Spreadsheet Simulations
Variabel Acak – Distribusi Probabilitas
VARIABEL ACAK DAN EKSPEKTASI (Random Variable and Expectation)
Dasar-Dasar Pemrograman
Bab 5 Distribusi Normal © 2002 Prentice-Hall, Inc.
AP Statistics: Chapter 7
Chapter 5 Statistical Models in Simulation
Chapter 3 Discrete Random Variables and Probability Distributions
Probability & Statistics Probability Theory Mathematical Probability Models Event Relationships Distributions of Random Variables Continuous Random.
POPULATION (of “units”)
Statistics Lecture 12.
Chapter 7 The Normal Distribution and Its Applications
Experiments, Outcomes, Events and Random Variables: A Revisit
Introduction to Probability: Solutions for Quizzes 4 and 5
1/2555 สมศักดิ์ ศิวดำรงพงศ์
Presentation transcript:

Ir. I Nyoman Setiawan, MT VARIABEL ACAK DAN EKSPEKTASI (Random Variable and Expectation) 1. Sheldon M Ross, Introduction Probability and Statistics for Engineers and Scientists, Oliver C. Ib, Fundamentals of Applied Probability and Random Proceses, John A Gubner, Probability and random Processes for Electrical and Computer Engineers, KA Stroud, Engineering Mathematics,2001

Ir. I Nyoman Setiawan, MT Pengertian Variabel Acak (Random Variable) Variabel acak (Random Variable) adalah suatu fungsi yang mengaitkan suatu bilangan real pada setiap unsur ruang sampel

Ir. I Nyoman Setiawan, MT

Fungsi Distribusi Kumulatif (Cumulatif Distribution Function /CDF)

Ir. I Nyoman Setiawan, MT Properties F x (x)

Ir. I Nyoman Setiawan, MT Contoh :

Ir. I Nyoman Setiawan, MT

Penyelesaian :

Ir. I Nyoman Setiawan, MT Variabel Acak Diskret (Discrete Random Variable) Fungsi Masa Probabilitas (Probability Mass Function/PMF)

Ir. I Nyoman Setiawan, MT

Penyelesaian :

Ir. I Nyoman Setiawan, MT Penyelesaian :

Ir. I Nyoman Setiawan, MT Penyelesaian :

Ir. I Nyoman Setiawan, MT Variabel Acak Kontinu (Continuous Random Variable) Fungsi Padat Probabilitas (Probability Dencity Function/PDF)

Ir. I Nyoman Setiawan, MT Properties dari fx (x)

Ir. I Nyoman Setiawan, MT Contoh :

Ir. I Nyoman Setiawan, MT Penyelesaian :

Ir. I Nyoman Setiawan, MT Penyelesaian :

Ir. I Nyoman Setiawan, MT Ekspektasi (Expectation)

Ir. I Nyoman Setiawan, MT

Contoh :

Ir. I Nyoman Setiawan, MT Moment

Ir. I Nyoman Setiawan, MT Varian Central Moment ke n

Ir. I Nyoman Setiawan, MT Contoh :

Ir. I Nyoman Setiawan, MT Penyelesaian :

Ir. I Nyoman Setiawan, MT Penyelesaian :

Ir. I Nyoman Setiawan, MT Penyelesaian :

Ir. I Nyoman Setiawan, MT Contoh :

Ir. I Nyoman Setiawan, MT Penyelesaian :