Linear Filtering – Part II Selim Aksoy Department of Computer Engineering Bilkent University

Slides:



Advertisements
Similar presentations
Linear Filtering – Part I Selim Aksoy Department of Computer Engineering Bilkent University
Advertisements

Content-Based Image Retrieval Selim Aksoy Department of Computer Engineering Bilkent University
Binary Image Analysis Selim Aksoy Department of Computer Engineering Bilkent University
Department of Computer Engineering
Linear Filtering – Part II Selim Aksoy Department of Computer Engineering Bilkent University
Linear Filtering – Part I Selim Aksoy Department of Computer Engineering Bilkent University
Binary Image Analysis Selim Aksoy Department of Computer Engineering Bilkent University
Content-Based Image Retrieval Selim Aksoy Department of Computer Engineering Bilkent University
Edge Detection Selim Aksoy Department of Computer Engineering Bilkent University
Linear Filtering – Part II Selim Aksoy Department of Computer Engineering Bilkent University
Digital Image Fundamentals Selim Aksoy Department of Computer Engineering Bilkent University
Digital Image Fundamentals Selim Aksoy Department of Computer Engineering Bilkent University
Linear Filtering – Part II Selim Aksoy Department of Computer Engineering Bilkent University
3-D Computational Vision CSc Image Processing II - Fourier Transform.
Edge Detection Selim Aksoy Department of Computer Engineering Bilkent University
Binary Image Analysis Selim Aksoy Department of Computer Engineering Bilkent University
Linear Filtering – Part I Selim Aksoy Department of Computer Engineering Bilkent University
Ted Adelson’s checkerboard illusion. Motion illusion, rotating snakes.
Pyramids and Texture. Scaled representations Big bars and little bars are both interesting Spots and hands vs. stripes and hairs Inefficient to detect.
Computer Vision University of Illinois Derek Hoiem
Image Processing and Analysis (ImagePandA) 5 – Image Restoration and Reconstruction Christoph Lampert / Chris Wojtan Based on slides by Selim Aksoy, Bilkent.
Linear Filtering – Part II Selim Aksoy Department of Computer Engineering Bilkent University
Reminder Fourier Basis: t  [0,1] nZnZ Fourier Series: Fourier Coefficient:
Convolution, Edge Detection, Sampling : Computational Photography Alexei Efros, CMU, Fall 2006 Some slides from Steve Seitz.
Immagini e filtri lineari. Image Filtering Modifying the pixels in an image based on some function of a local neighborhood of the pixels
CSCE 641 Computer Graphics: Fourier Transform Jinxiang Chai.
Lecture 3: Image Resampling CS4670: Computer Vision Noah Snavely Nearest-neighbor interpolation Input image 3x upsample hq3x interpolation (ZSNES)
Convolution and Edge Detection : Computational Photography Alexei Efros, CMU, Fall 2005 Some slides from Steve Seitz.
CPSC 641 Computer Graphics: Fourier Transform Jinxiang Chai.
Computer Vision - A Modern Approach Set: Pyramids and Texture Slides by D.A. Forsyth Scaled representations Big bars (resp. spots, hands, etc.) and little.
Computational Photography: Fourier Transform Jinxiang Chai.
Transforms: Basis to Basis Normal Basis Hadamard Basis Basis functions Method to find coefficients (“Transform”) Inverse Transform.
Fourier Analysis : Rendering and Image Processing Alexei Efros.
Image Sampling CSE 455 Ali Farhadi Many slides from Steve Seitz and Larry Zitnick.
CSC589 Introduction to Computer Vision Lecture 9 Sampling, Gaussian Pyramid Bei Xiao.
Applications of Image Filters Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem 02/04/10.
Image Resampling CS4670: Computer Vision Noah Snavely.
Image Resampling CS4670: Computer Vision Noah Snavely.
Linear Filtering – Part I Selim Aksoy Department of Computer Engineering Bilkent University
Lecture 3: Edge detection CS4670/5670: Computer Vision Kavita Bala From Sandlot ScienceSandlot Science.
Thinking in Frequency Computational Photography University of Illinois Derek Hoiem 09/01/15.
Lecture 7: Sampling Review of 2D Fourier Theory We view f(x,y) as a linear combination of complex exponentials that represent plane waves. F(u,v) describes.
Computer Vision Spring ,-685 Instructor: S. Narasimhan Wean 5403 T-R 3:00pm – 4:20pm.
Mestrado em Ciência de Computadores Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos VC 15/16 – TP7 Spatial Filters Miguel Tavares Coimbra.
Image hole-filling. Agenda Project 2: Will be up tomorrow Due in 2 weeks Fourier – finish up Hole-filling (texture synthesis) Image blending.
Lecture 5: Fourier and Pyramids
Projects Project 1a due this Friday Project 1b will go out on Friday to be done in pairs start looking for a partner now.
Last Lecture photomatix.com. Today Image Processing: from basic concepts to latest techniques Filtering Edge detection Re-sampling and aliasing Image.
Linear filters. CS8690 Computer Vision University of Missouri at Columbia What is Image Filtering? Modify the pixels in an image based on some function.
Miguel Tavares Coimbra
Prof. Adriana Kovashka University of Pittsburgh September 14, 2016
Image Resampling & Interpolation
Computer Vision Brown James Hays 09/16/11 Thinking in Frequency Computer Vision Brown James Hays Slides: Hoiem, Efros, and others.
Linear Filters and Edges Chapters 7 and 8
Linear Filtering – Part II
Many slides from Steve Seitz and Larry Zitnick
Linear Filters and Edges Chapters 7 and 8
Department of Computer Engineering
Filtering – Part I Gokberk Cinbis Department of Computer Engineering
Image Sampling Moire patterns
More Image Manipulation
CSCE 643 Computer Vision: Thinking in Frequency
Samuel Cheng Slide credits: Noah Snavely
Phase and Amplitude in Fourier Transforms, Meaning of frequencies
Oh, no, wait, sorry, I meant, welcome to the implementation of 20th-century science fiction literature, or a small part of it, where we will learn about.
Department of Computer Engineering
Image Resampling & Interpolation
Department of Computer Engineering
Samuel Cheng Slide credits: Noah Snavely
Thinking in Frequency Computational Photography University of Illinois
Presentation transcript:

Linear Filtering – Part II Selim Aksoy Department of Computer Engineering Bilkent University

CS 484, Spring 2015©2015, Selim Aksoy2 Fourier theory The Fourier theory shows how most real functions can be represented in terms of a basis of sinusoids. The building block: A sin( ωx + Φ ) Add enough of them to get any signal you want. Adapted from Alexei Efros, CMU

CS 484, Spring 2015©2015, Selim Aksoy3 Fourier transform

CS 484, Spring 2015©2015, Selim Aksoy4 Fourier transform

CS 484, Spring 2015©2015, Selim Aksoy5 Fourier transform

CS 484, Spring 2015©2015, Selim Aksoy6 Fourier transform

CS 484, Spring 2015©2015, Selim Aksoy7 Fourier transform

CS 484, Spring 2015©2015, Selim Aksoy8 Fourier transform

CS 484, Spring 2015©2015, Selim Aksoy9 To get some sense of what basis elements look like, we plot a basis element --- or rather, its real part --- as a function of x,y for some fixed u, v. We get a function that is constant when (ux+vy) is constant. The magnitude of the vector (u, v) gives a frequency, and its direction gives an orientation. The function is a sinusoid with this frequency along the direction, and constant perpendicular to the direction. u v Adapted from Antonio Torralba

Fourier transform CS 484, Spring 2015©2015, Selim Aksoy10 Adapted from Antonio Torralba Here u and v are larger than in the previous slide. u v

Fourier transform CS 484, Spring 2015©2015, Selim Aksoy11 Adapted from Antonio Torralba And larger still... u v

CS 484, Spring 2015©2015, Selim Aksoy12 Fourier transform Adapted from Alexei Efros, CMU

CS 484, Spring 2015©2015, Selim Aksoy13 Fourier transform Adapted from Gonzales and Woods

CS 484, Spring 2015©2015, Selim Aksoy14 Fourier transform Adapted from Gonzales and Woods

CS 484, Spring 2015©2015, Selim Aksoy15 Fourier transform

CS 484, Spring 2015©2015, Selim Aksoy16 Fourier transform

CS 484, Spring 2015©2015, Selim Aksoy17 Adapted from Antonio Torralba Horizontal orientation Vertical orientation 45 deg. 0f max 0 fx in cycles/image Low spatial frequencies High spatial frequencies Log power spectrum How to interpret a Fourier spectrum:

Fourier transform CS 484, Spring 2015©2015, Selim Aksoy18 Adapted from Antonio Torralba AB C 12 3

CS 484, Spring 2015©2015, Selim Aksoy19 Fourier transform Adapted from Shapiro and Stockman

CS 484, Spring 2015©2015, Selim Aksoy20 Convolution theorem

CS 484, Spring 2015©2015, Selim Aksoy21 Frequency domain filtering Adapted from Shapiro and Stockman, and Gonzales and Woods

CS 484, Spring 2015©2015, Selim Aksoy22 Frequency domain filtering Since the discrete Fourier transform is periodic, padding is needed in the implementation to avoid aliasing (see section 4.6 in the Gonzales-Woods book for implementation details).

CS 484, Spring 2015©2015, Selim Aksoy23 Frequency domain filtering f(x,y) h(x,y) g(x,y)   |F(u,v)| |H(u,v)| |G(u,v)|   Adapted from Alexei Efros, CMU

CS 484, Spring 2015©2015, Selim Aksoy24 Smoothing frequency domain filters

CS 484, Spring 2015©2015, Selim Aksoy25 Smoothing frequency domain filters The blurring and ringing caused by the ideal low- pass filter can be explained using the convolution theorem where the spatial representation of a filter is given below.

CS 484, Spring 2015©2015, Selim Aksoy26 Sharpening frequency domain filters

CS 484, Spring 2015©2015, Selim Aksoy27 Sharpening frequency domain filters Adapted from Gonzales and Woods

CS 484, Spring 2015©2015, Selim Aksoy28 Sharpening frequency domain filters Adapted from Gonzales and Woods

CS 484, Spring 2015©2015, Selim Aksoy29 Template matching Correlation can also be used for matching. If we want to determine whether an image f contains a particular object, we let h be that object (also called a template) and compute the correlation between f and h. If there is a match, the correlation will be maximum at the location where h finds a correspondence in f. Preprocessing such as scaling and alignment is necessary in most practical applications.

CS 484, Spring 2015©2015, Selim Aksoy30 Template matching Adapted from Gonzales and Woods

CS 484, Spring 2015©2015, Selim Aksoy31 Template matching Face detection using template matching: face templates.

CS 484, Spring 2015©2015, Selim Aksoy32 Template matching Face detection using template matching: detected faces.

CS 484, Spring 2015©2015, Selim Aksoy33 Resizing images How can we generate a half-sized version of a large image? Adapted from Steve Seitz, U of Washington

CS 484, Spring 2015©2015, Selim Aksoy34 Resizing images Throw away every other row and column to create a 1/2 size image (also called sub-sampling). 1/4 1/8 Adapted from Steve Seitz, U of Washington

CS 484, Spring 2015©2015, Selim Aksoy35 Resizing images Does this look nice? 1/4 (2x zoom)1/8 (4x zoom)1/2 Adapted from Steve Seitz, U of Washington

CS 484, Spring 2015©2015, Selim Aksoy36 Resizing images We cannot shrink an image by simply taking every k’th pixel. Solution: smooth the image, then sub-sample. Gaussian 1/4 Gaussian 1/8 Gaussian 1/2 Adapted from Steve Seitz, U of Washington

CS 484, Spring 2015©2015, Selim Aksoy37 Resizing images Gaussian 1/4 (2x zoom) Gaussian 1/8 (4x zoom) Gaussian 1/2 Adapted from Steve Seitz, U of Washington

CS 484, Spring 2015©2015, Selim Aksoy38 Sampling and aliasing Adapted from Steve Seitz, U of Washington

CS 484, Spring 2015©2015, Selim Aksoy39 Sampling and aliasing Errors appear if we do not sample properly. Common phenomenon: High spatial frequency components of the image appear as low spatial frequency components. Examples: Wagon wheels rolling the wrong way in movies. Checkerboards misrepresented in ray tracing. Striped shirts look funny on color television.

CS 484, Spring 2015©2015, Selim Aksoy40 Gaussian pyramids Adapted from Gonzales and Woods

CS 484, Spring 2015©2015, Selim Aksoy41 Gaussian pyramids Adapted from Michael Black, Brown University

CS 484, Spring 2015©2015, Selim Aksoy42 Gaussian pyramids Adapted from Michael Black, Brown University