Amand Faessler, München, 24. November 20051 Double Beta Decay and Physics beyond the Standard Model Amand Faessler Tuebingen Accuracy of the Nuclear Matrix.

Slides:



Advertisements
Similar presentations
LRP2010 WG5 Fundamental Interactions Nathal Severijns ( K.U.Leuven) for WG5 Scoping workshop Frankfurt, October th 2009.
Advertisements

Lia Toledo Moreira Mota, Alexandre de Assis Mota, Wu, Shin-Ting
Slovenian experience on 98/34 Notification Procedure Conference on the Functioning of the 98/34 Notification Procedure, Brussels, 22 June 2005 mag. Irena.
IS THE NEUTRINO A MAJORANA OR A DIRAC PARTICLE ? Ettore Fiorini, Bologna June or Lepton number conservation or violation Has neutrino a finite.
1 Probing CP violation in neutrino oscillations with neutrino telescopes Kfir Blum, Yosef Nir, Eli Waxman arXiv: [hep-ph]
Double Chooz: Collaboration, Experimental concept, Detector, Physics Prospect, Status & Schedule, Summary.
May 9, September 2005, Barcelona, Spain Prioritization of Forestry Themes for the SRA Risto Päivinen.
25 seconds left…...
Neutrino mixing angle θ 13 In a SUSY SO(10) GUT Xiangdong Ji Peking University University of Maryland.
Spring Part III: Introduction to XPath XML Path Language.
Schleching 2/2008Präzisionsphysik mit Neutronen/5. Theorie n-Zerfall Neutron Decay St.Petersburg 1 5. zur Theorie β-Zerfall des Neutrons.
Neutrinoless Double Beta Decay
Flavor Violation in SUSY SEESAW models 8th International Workshop on Tau-Lepton Physics Tau04 Junji Hisano (ICRR, U of Tokyo)
Amand Faessler, GERDA, 11. November Double Beta Decay and Neutrino Masses Amand Faessler Tuebingen Accuracy of the Nuclear Matrix Elements. It determines.
Amand Faessler, Tuebingen1 Double Beta Decay and Neutrino Masses Amand Faessler Tuebingen Neutrino Masses and the Neutrinoless Double Beta Decay: Dirac.
Amand Faessler, 22. Oct Double Beta Decay and Neutrino Masses Amand Faessler Tuebingen Accuracy of the Nuclear Matrix Elements. It determines the.
Description of Double Beta Decay, Nuclear Structure and Physics beyond the Standard Model - Status and Prospects. Amand Faessler University of Tuebingen.
Neutrinoless double beta decay and Lepton Flavor Violation Or, in other words, how the study of LFV can help us to decide what mechanism is responsible.
Recent Discoveries in Neutrino Physics: Understanding Neutrino Oscillations 2-3 neutrino detectors with variable baseline 1500 ft nuclear reactor Determining.
Status of Neutrino Science Hitoshi Murayama LBNLnu April 11, 2003.
Amand Faessler, Tuebingen Double Beta Decay and Neutrino Masses Amand Faessler Tuebingen 1. Solution of the Solar Neutrino Problem by SNO. 2. Neutrino.
K. Zuber, University of Sussex Neutrinoless double beta decay SUSSP 61, St. Andrews, 9-23 Aug
Double beta decay nuclear matrix elements in deformed nuclei O. Moreno, R. Álvarez-Rodríguez, P. Sarriguren, E. Moya de Guerra F. Šimkovic, A. Faessler.
Neutrino Mass and Mixing David Sinclair Carleton University PIC2004.
Probing Majorana Neutrinos in Rare Meson Decays Claudio Dib UTFSM I.S. & B.K. Fest, UTFSM, May 2010 G. Cvetic, C.D., S.K. Kang, C.S. Kim, PRD 82, ,
3 Neutrino Oscillation and Off-axis Experiments David Barnhill UCLA May 30, 2003.
CP-phase dependence of neutrino oscillation probability in matter 梅 (ume) 田 (da) 義 (yoshi) 章 (aki) with Lin Guey-Lin ( 林 貴林 ) National Chiao-Tung University.
0νββ nuclear matrix elements within QRPA and its variants W. A. Kamiński 1, A. Bobyk 1 A. Faessler 2 F. Šimkovic 2,3, P. Bene š 4 1 Dept. of Theor. Phys.,
NEUTRINOLESS DOUBLE BETA DECAY ANGULAR CORRELATION AND NEW PHYSICS Dmitry Zhuridov Particles and Fields Journal club Department of Physics National Tsing.
NEMO-3 Double Beta Decay Experiment: Last Results A.S. Barabash ITEP, Moscow (On behalf of the NEMO Collaboration)
0 American Physical Society MultiDivisional Neutrino Study DOE-OS Briefing January 7, 2005 Washington DC Stuart Freedman Boris Kayser.
Alain Blondel CHIPP Neutrino meeting NEUCHATEL June 2004 Aims of the meeting At least four universities in Switzerland do research in Neutrino Physics.
Probing Majorana Neutrinos (in Rare Decays of Mesons) 11/17/ DBD11 C. S. Kim arXiv: (PRD82,053010,2010) G. Cvetic, C. Dib, S.K. Kang, C.S.
February 23, 2005Neutrino Telescopes, Venice Comparing Solar and KamLAND Data Comparing Solar and KamLAND Data Carlos Pena Garay IAS, Princeton ~
Can one measure the Neutrino Mass in the Double Beta Decay ?
New era of neutrino physics 1.Atmospheric neutrino oscillations (in particular zenith angle dependence of the muon neutrino flux) 2. Solar neutrino deficit.
G G G Fermion Masses: Arbitrary L R Quark Masses: Observed: Observed: m(c) : m(t) = m(u):m(c) m(c) : m(t) = m(u):m(c) 1/207 1/207 1/207 1/207.
Open questions in  physics  : mechanism & EFT III. Neutrinos.
1 Neutrino Phenomenology Boris Kayser Scottish Summer School August 10,
NEUTRINOS: PAST PRESENT FUTURE Heidi Frank Merritt Fest
Impact of Neutrino Oscillation Measurements on Theory Hitoshi Murayama NuFact 03 June 10, 2003.
Compared sensitivities of next generation DBD experiments IDEA - Zaragoza meeting – 7-8 November 2005 C. Augier presented by X. Sarazin LAL – Orsay – CNRS/IN2P3.
1 Neutrino Physics 2 Pedro Ochoa May 22 nd What about solar neutrinos and the solar neutrino problem? KamLAND uses the entire Japanese nuclear.
Measuring  13 with Reactors Stuart Freedman HEPAP July 24, 2003 Bethesda Reactor Detector 1Detector 2 d2d2 d1d1.
May 19, 2005UAM-IFT, Madrid : Neutrino physics in underground labs Carlos Pena Garay IAS ~
Kam-Biu Luk 28 Nov, 2003 Neutrino at Daya Bay Kam-Biu Luk University of California, Berkeley and Lawrence Berkely National Laboratory.
„The uncertainty in the calculated nuclear matrix elements for neutrinoless double beta decay will constitute the principle obstacle to answering some.
Amand Faessler, Madrid, 8. June Double Beta Decay, a Test for New Physics Amand Faessler Tuebingen „The Nuclear Matrix Elements for the  are.
Neutrino physics: The future Gabriela Barenboim TAU04.
Amand Faesler, University of Tuebingen, Germany. Short Range Nucleon-Nucleon Correlations, the Neutrinoless Double Beta Decay and the Neutrino Mass.
Double beta decay and Leptogenesis International workshop on double beta decay searches Oct SNU Sin Kyu Kang (Seoul National University of.
Neutrino Masses and Flavor Mixing H. Fritzsch.
Outstanding Problems in Neutrino Physics
Beyond the Standard Model- The elusive neutrinos -
Flavor Mixing of quarks.
Neutrinos and the Evolution
Kazuo Muto Tokyo Institute of Technology (TokyoTech)
SU(3) Gauge Family Model for Neutrino Mixing and Masses
Neutrino Masses, Double Beta Decay and Nuclear Structure
  Double Beta Decay A problem of particle, nuclear and atomic
NOW 2006 Recent developments in Double Beta Decay Fedor Šimkovic
Amand Faessler University of Tuebingen
Double beta decay and Leptogenesis
Neutrino Masses and Mixings
Neutrino Oscillations
Testing Seesaw at LHC 郑亚娟.
University of Tuebingen,
The Neutrino World: Present and Future Boris Kayser
Kazuo MUTO Tokyo Institute of Technology
Presentation transcript:

Amand Faessler, München, 24. November Double Beta Decay and Physics beyond the Standard Model Amand Faessler Tuebingen Accuracy of the Nuclear Matrix Elements. It determines the Error of the Majorana Neutrino Mass extracted

Amand Faessler, München, 24. November Neutrinoless Double Beta Decay The Double Beta Decay: β-β β-β- e-e- e-e- E>2m e

Amand Faessler, München, 24. November νββ -Decay (in SM allowed) Thesis Maria Goeppert-Mayer 1935 Goettingen PP nn

Amand Faessler, München, 24. November O νββ -Decay (forbidden) only for Majorana Neutrinos ν = ν c P P nn Left ν Phase Space 10 6 x 2 νββ

Amand Faessler, München, 24. November GRAND UNIFICATION Left-right Symmetric Models SO(10) Majorana Mass:

Amand Faessler, München, 24. November P P ν ν nn e-e- e-e- L/R l/r

Amand Faessler, München, 24. November l/r P ν P n n light ν heavy N Neutrinos l/r L/R

Amand Faessler, München, 24. November Supersymmetry Bosons ↔ Fermions Neutralinos PP e-e- e-e- nn u u u u dd Proton Neutron

Amand Faessler, München, 24. November Theoretical Description: Simkovic, Rodin, Benes, Vogel, Bilenky, Salesh, Gutsche, Pacearescu, Haug, Kovalenko, Vergados, Kosmas, Schwieger, Raduta, Kaminski, Stoica, Suhonen, Civitarese, Tomoda, Valle, Moya de Guerra, Sarriguren et al k k k e1e1 e2e2 P P ν EkEk EiEi n n 0 νββ Never in Tuebingen: Muto/Tokyo, Hirsch/Valencia

Amand Faessler, München, 24. November Neutrinoless Double Beta- Decay Probability

Amand Faessler, München, 24. November Effective Majorana Neutrino-Mass for the 0  Decay CP Tranformation from Mass to Flavor Eigenstates

Amand Faessler, München, 24. November Neutrino-Masses from the 0 ν  and Neutrino Oscillations Solar Neutrinos (CL, Ga, Kamiokande, SNO) Atmospheric ν (Super-Kamiokande) Reactor ν (Chooz; KamLand) with CP-Invariance:

Amand Faessler, München, 24. November ν 1, ν 2, ν 3 Mass States ν e, ν μ, ν τ Flavor States Theta 12 = 32.6 degrees Solar + KamLand Theta 13 < 13 degrees Chooz Theta 23 = 45 degrees S-Kamiokande  m 2 12 (solar  8  eV   m 2 23  atmospheric  eV 

Amand Faessler, München, 24. November OSCILLATIONS AND DOUBLE BETA DECAY Hierarchies: m ν Normal m 3 m 2 m 1 m 1 <<m 2 <<m 3 Inverted m 2 m 1 m 3 m 3 <<m 1 <<m 2 Bilenky, Faessler, Simkovic P. R. D 70(2004)33003

Amand Faessler, München, 24. November BilenkyBilenky, Faessler, Simkovic:, Phys.Rev. D70:033003(2004) : hep-ph/ FaesslerSimkovic

Amand Faessler, München, 24. November (Bild) Bilenky, Faessler, Simkovic:, Phys.Rev. D70:033003(2004) : hep-ph/ Bilenky FaesslerSimkovic

Amand Faessler, München, 24. November The best choice: Quasi-Particle-  Quasi-Boson-Approx.:  Particle Number non-conserv. (important near closed shells)  Unharmonicities  Proton-Neutron Pairing Pairing

Amand Faessler, München, 24. November

Amand Faessler, München, 24. November Nucleus 48 Ca 76 Ge 82 Se 96 Zr 100 Mo 116 Cd 128 Te 130 Te 134 Xe 136 Xe 150 Nd T1/2 (exp) [years] > > > > > > > > > > > Ref.:YouKlap- dor Elli- ott Arn.EjiriDane- vich Ales. Ber.Stau dt Klime nk. [eV]<22.<0.47<8.7<40.<2.8<3.8<17.<3.2<27.<3.8<7.2 η ~m(p)/M(  <200.<0.79<15.<79.<6.0<7.0<27.<4.9<38.<3.5<13. λ‘(111)[10 -4 ] <8.9<1.1<5.0<9.4<2.8<3.4<5.8<2.4<6.8<2.1<3.8 Only for Majorana ν possible.

Amand Faessler, München, 24. November Contribution of Different Multipoles to M(0 )

Amand Faessler, München, 24. November g(A)**4 = 1.25**4 = 2.44 fit to 2  RodinRodin, Faessler, Simkovic, Vogel, Mar 2005 nucl-th/ FaesslerSimkovicVogel

Amand Faessler, München, 24. November Overlap of Wave Functions of the not involved core of the initial and final nuclei. Benes, Faessler, Simkovic Benesch, Faessler, Simkovic Preliminary (July 2005) Ge76

Amand Faessler, München, 24. November Overlap of the core added to the 0  decay and new 2  -decay data (NEMO).

Amand Faessler, München, 24. November R-QRPA-0  -Decay Nuclear Matrix Elements with Lipkin-Nogami and and Overlap of the Core. No experimental error included Closed Shells involved Benesch, Faessler, Simkovic (July 2005) Preliminary 20; 50; 82

Amand Faessler, München, 24. November Renormalized QRPA with Lipkin-Nogami including the experimental error of the 2  decay

Amand Faessler, München, 24. November Relation of M(0 ) on M(2 ) independent on Size of Basis ( 21 and 9 or 13 levels) Ratio M(0 )/M(2 ) with g(pp) fixed to M(2 ) independent of basis size

Amand Faessler, München, 24. November (QRPA) 2.34 (RQRPA) Muto corrected

Amand Faessler, München, 24. November M0ν (QRPA) O. Civitarese, J. Suhonen, NPA 729 (2003) 867 Nucleus their(QRPA, 1.254) our(QRPA, 1.25) 76Ge (0.12) 100Mo (0.10) 130Te (0.47) 136Xe (0.20) g(pp) fitted differently Higher order terms of nucleon Current included differently with Gaussian form factors based on a special quark model ( Kadkhikar, Suhonen, Faessler, Nucl. Phys. A29(1991)727). Does neglect pseudoscalar coupling (see eq. (19a)), which is an effect of 30%. We: Higher order currents from Towner and Hardy. What is the basis and the dependence on the size of the basis? Short-range Brueckner Correlations not included. But finite size effects included. We hope to understand the differences. But for that we need to know their input parameters ( g(pp), g(ph),basis, …)!

Amand Faessler, München, 24. November Neutrinoless Double Beta Decay The Double Beta Decay: β-β β-β- e-e- e-e- E>2m e x xxx Gamov-Teller single beta decay in the second leg fitted with g(pp) by Suhonen et al.. Underestimates the first leg. We fit the full 2  decay by adjusting g(pp).

Amand Faessler, München, 24. November Fit of g(pp) to the single beta (2. leg) and the 2 double beta decay (small and large basis). Fit to 2  Fit to 1+ to 0+

Amand Faessler, München, 24. November

Amand Faessler, München, 24. November Uncorrelated and Correlated Relative N-N-Wavefunction in the N-N-Potential Short Range Correlations

Amand Faessler, München, 24. November Uncorrelated and Correlated Relative N-N-Wavefunction in the N-N-Potential Short Range Correlations

Amand Faessler, München, 24. November Jastrow-Function multiplying the relative N-N wavefunction (Parameters from Miller and Spencer, Ann. Phys 1976)

Amand Faessler, München, 24. November Influence of Short Range Correlations (Parameters from Miller and Spencer, Ann. Phys 1976)

Amand Faessler, München, 24. November Contribution of Different Multipoles to the zero Neutrino Matrixelements in QRPA s.r.c. = short range correlations h.o.t. = higher order currents Different Multipoles a) 76 Ge small model space ( 9 levels) b) 76 Ge large model space (21 levels) C) 100 Mo small model space ( 13 levels) d) 100 Mo large model space ( 21 levels)

Amand Faessler, München, 24. November Comparison of 2  Half Lives with Shell model Results from Strassburg

Amand Faessler, München, 24. November  Decay Matrix Elements in R-QRPA and the Strassburg Shell Model

Amand Faessler, München, 24. November Contribution of GT 1+ States and the Sum of all other States to M(0 )

Amand Faessler, München, 24. November Multipole Decomposition of M(0 ) in QRPA

Amand Faessler, München, 24. November

Amand Faessler, München, 24. November

Amand Faessler, München, 24. November M0ν (R-QRPA; 1.25) S. Stoica, H.V. Klapdor- Kleingrothaus, NPA 694 (2001) 269 A similar procedure of fixing g(pp) to the two neutrino decay in one basis (?). Higher order terms of nucleon current not considered Nucleus l.m.s s.m.s our 76Ge 1.87 (l=12) 3.74 (s=9) 2.40(.12) 100Mo (.15) 130Te (.46) 136Xe (.23) Model space dependence ? Disagreement also between his tables and figures for R-QRPA and S-QRPA!

Amand Faessler, München, 24. November Neutrinoless Double Beta Decay Matrix Elements EVZ-88 = Engel, Vogel, Zirnbauer; MBK-89 = Muto. Bender, Klapdor; T-91 Tomoda; SKF-91 = Suhonen, Khadkikar, Faessler; PSVF-96 = Pantis, Simkovic, Vergados, Faessler; AS-98 = Aunola, Suhonen; SPVF-99 = Simkovic, Pantis, Vergados, Faessler; SK-01 = Stoica, Klapdor; CS-03= Civitarese, Suhonen.

Amand Faessler, München, 24. November Neutrinoless Double Beta Decay Matrix Elements EVZ-88 = Engel, Vogel, Zirnbauer; MBK-89 = Muto. Bender, Klapdor; T-91 Tomoda; SKF-91 = Suhonen, Khadkikar, Faessler; PSVF-96 = Pantis, Simkovic, Vergados, Faessler; AS-98 = Aunola, Suhonen; SPVF-99 = Simkovic, Pantis, Vergados, Faessler; SK-01 = Stoica, Klapdor; CS-03= Civitarese, Suhonen.

Amand Faessler, München, 24. November Neutrinoless Double Beta Decay Matrix Elements EVZ-88 = Engel, Vogel, Zirnbauer; MBK-89 = Muto. Bender, Klapdor; T-91 Tomoda; SKF-91 = Suhonen, Khadkikar, Faessler; PSVF-96 = Pantis, Simkovic, Vergados, Faessler; AS-98 = Aunola, Suhonen; SPVF-99 = Simkovic, Pantis, Vergados, Faessler; SK-01 = Stoica, Klapdor; CS-03= Civitarese, Suhonen.

Amand Faessler, München, 24. November Neutrinoless Double Beta Decay and the Sensitivity to the Neutrino Mass of planed Experiments expt.T 1/2 [y] [eV] DAMA ( 136 Xe) 1.2 X MAJORANA ( 76 Ge) 3 X EXO 10t ( 136 Xe) 4 X GEM ( 76 Ge)7 X GERDA II ( 76 Ge) 2 X CANDLES ( 48 Ca) 1 X MOON ( 100 Mo) 1 X

Amand Faessler, München, 24. November Neutrinoless Double Beta Decay and the Sensitivity to the Neutrino Mass of planed Experiments expt.T 1/2 [y] [eV] XMASS ( 136 Xe) 3 X CUORE ( 130 Te) 2 X COBRA ( 116 Cd) 1 X DCBA ( 100 Mo) 2 X DCBA ( 82 Se)3 X CAMEO ( 116 Cd) 1 X DCBA ( 150 Nd) 1 X

Amand Faessler, München, 24. November Neutrino-Masses from the 0 ν  and Neutrino Oscillations Solar Neutrinos (CL, Ga, Kamiokande, SNO) Atmospheric ν (Super-Kamiokande) Reactor ν (Chooz; KamLand) with CP-Invariance:

Amand Faessler, München, 24. November Solar Neutrinos (+KamLand): (KamLand) Atmospheric Neutrinos: (Super-Kamiok.)

Amand Faessler, München, 24. November Reactor Neutrinos (Chooz): CP

Amand Faessler, München, 24. November ν 1, ν 2, ν 3 Mass States ν e, ν μ, ν τ Flavor States Theta(1,2) = 32.6 degrees Solar + KamLand Theta(1,3) < 13 degrees Chooz Theta(2,3) = 45 degrees S-Kamiokande

Amand Faessler, München, 24. November OSCILLATIONS AND DOUBLE BETA DECAY Hierarchies: m ν Normal m 3 m 2 m 1 m 1 <<m 2 <<m 3 Inverted m 2 m 1 m 3 m 3 <<m 1 <<m 2 Bilenky, Faessler, Simkovic P. R. D 70(2004)33003

Amand Faessler, München, 24. November (Bild)

Amand Faessler, München, 24. November Summary: Accuracy of Neutrino Masses from 0  Fit the g(pp) by  in front of the particle- particle NN matrixelement include exp. Error of . Calculate with these g(pp) for three different forces (Bonn, Nijmegen, Argonne) and three different basis sets (small about 2 shells, intermediate 3 shells and large 5 shells) the  Use QRPA and R-QRPA (Pauli principle) Use: g(A) = 1.25 and 1.00 Error of matrixelement 20 to 40 % (96Zr larger; largest errors from experim. values of T(1/2, 2  ))  Core overlap reduction by ~0.90 (preliminary)

Amand Faessler, München, 24. November Summary: Results from  Klapdor et al. from  Ge76 with R-QRPA (no error of theory included): 0.15 to 0.72 [eV]. (  Ge  Exp. Klapdor)  0.47 [eV]  [GeV] > 5600 [GeV] SUSY+R-Parity: ‘(1,1,1) < 1.1*10**(-4) Mainz-Troisk, Triton Decay: m(  2.2 [eV] Astro Physics (SDSS): Sum{ m( ) } < ~0.5 to 2 [eV] Do not take democratic averaged matrix elements !!!

Amand Faessler, München, 24. November Open Problems: 1. Overlapping but slightly different Hilbert spaces in intermediate Nucleus for QRPA from intial and from final nucleus. 2. Pairing does not conserve Nucleon number. Problem at closed shells. Particle projection. Lipkin-Nogami, 3. Deformed nuclei? (e.g.: 150 Nd ) THE END β-β pn -1 np -1

Amand Faessler, München, 24. November Summary: Accuracy of Neutrino Masses by the Double Beta Decay Dirac versus Majorana Neutrinos Grand Unified Theories (GUT‘s), R-Parity violatingSupersymmetry → Majorana- Neutrino = Antineutrinos <m(  eV; ‘ < 1.1*10**(-4) Direct measurement in the Tritium Beta Decay in Mainz and Troisk Klapdor et al.: = 0.1 – 0.9 [eV] ; R-QRPA: 0.15 – 0.72 [eV] nn nn P P PP d d d d u u u u u u

Amand Faessler, München, 24. November Neutrino Masses and Supersymmetry R-Parity violating Supersymmetry mixes Neutrinos with Neutrinalinos (Photinos, Zinos, Higgsinos) and Tau-Susytau-Loops, Bottom-Susybottom-Loops → Majorana-Neutrinos (Faessler, Haug, Vergados: Phys. Rev. D ) m(neutrino1) = ~0 – 0.02 [eV] m(neutrino2) = – 0.04 [eV] m(neutrino3) = 0.03 – 1.03 [eV] 0-Neutrino Double Beta decay = [eV] ββ Experiment: < 0.47 [eV] Klapdor et al.: = 0.1 – 0.9 [eV] Tritium (Otten, Weinheimer, Lobashow) < 2.2 [eV] THE END

Amand Faessler, München, 24. November ν -Mass-Matrix by Mixing with: Diagrams on the Tree level: Majorana Neutrinos:

Amand Faessler, München, 24. November Loop Diagrams: Figure 0.1: quark-squark 1-loop contribution to m v X X Majorana Neutrino

Amand Faessler, München, 24. November Figure 0.2: lepton-slepton 1-loop contribution to m v (7x7) Mass-Matrix: X X Block Diagonalis.

Amand Faessler, München, 24. November x 7 Neutrino-Massmatrix: Basis: Eliminate Neutralinos in 2. Order: separabel { Mass Eigenstate Vector in flavor space for 2 independent and possible

Amand Faessler, München, 24. November Super-K:

Amand Faessler, München, 24. November Horizontal U(1) Symmetry U(1) Field U(1) charge R-Parity breaking terms must be without U(1) charge change (U(1) charge conservat.) Symmetry Breaking:

Amand Faessler, München, 24. November How to calculate λ ‘ i33 (and λ i33 ) from λ ‘ 333 ? U(1) charge conserved! 1,2,3 = families

Amand Faessler, München, 24. November g PP fixed to 2 νββ; M(0  ) [MeV**(-1)] Each point: (3 basis sets) x (3 forces) = 9 values

Amand Faessler, München, 24. November Assuming only Electron Neutrinos: (ES) 2.35*10 6 [ Φ ] (CC) 1.76*10 6 [ Φ ] (NC) 5.09*10 6 [ Φ ] Including Muon and Tauon ν : Φ(νe)Φ(νe)=1.76*10 6 (CC) Φ(νμ+ντ)Φ(νμ+ντ)=3.41*10 6 (CC+ES) Φ(νe+νμ+ντ)Φ(νe+νμ+ντ)=5.09*10 6 (NC) Φ ( ν -Bahcall)=5.14*10 6

Amand Faessler, München, 24. November