Amand Faessler, München, 24. November Double Beta Decay and Physics beyond the Standard Model Amand Faessler Tuebingen Accuracy of the Nuclear Matrix Elements. It determines the Error of the Majorana Neutrino Mass extracted
Amand Faessler, München, 24. November Neutrinoless Double Beta Decay The Double Beta Decay: β-β β-β- e-e- e-e- E>2m e
Amand Faessler, München, 24. November νββ -Decay (in SM allowed) Thesis Maria Goeppert-Mayer 1935 Goettingen PP nn
Amand Faessler, München, 24. November O νββ -Decay (forbidden) only for Majorana Neutrinos ν = ν c P P nn Left ν Phase Space 10 6 x 2 νββ
Amand Faessler, München, 24. November GRAND UNIFICATION Left-right Symmetric Models SO(10) Majorana Mass:
Amand Faessler, München, 24. November P P ν ν nn e-e- e-e- L/R l/r
Amand Faessler, München, 24. November l/r P ν P n n light ν heavy N Neutrinos l/r L/R
Amand Faessler, München, 24. November Supersymmetry Bosons ↔ Fermions Neutralinos PP e-e- e-e- nn u u u u dd Proton Neutron
Amand Faessler, München, 24. November Theoretical Description: Simkovic, Rodin, Benes, Vogel, Bilenky, Salesh, Gutsche, Pacearescu, Haug, Kovalenko, Vergados, Kosmas, Schwieger, Raduta, Kaminski, Stoica, Suhonen, Civitarese, Tomoda, Valle, Moya de Guerra, Sarriguren et al k k k e1e1 e2e2 P P ν EkEk EiEi n n 0 νββ Never in Tuebingen: Muto/Tokyo, Hirsch/Valencia
Amand Faessler, München, 24. November Neutrinoless Double Beta- Decay Probability
Amand Faessler, München, 24. November Effective Majorana Neutrino-Mass for the 0 Decay CP Tranformation from Mass to Flavor Eigenstates
Amand Faessler, München, 24. November Neutrino-Masses from the 0 ν and Neutrino Oscillations Solar Neutrinos (CL, Ga, Kamiokande, SNO) Atmospheric ν (Super-Kamiokande) Reactor ν (Chooz; KamLand) with CP-Invariance:
Amand Faessler, München, 24. November ν 1, ν 2, ν 3 Mass States ν e, ν μ, ν τ Flavor States Theta 12 = 32.6 degrees Solar + KamLand Theta 13 < 13 degrees Chooz Theta 23 = 45 degrees S-Kamiokande m 2 12 (solar 8 eV m 2 23 atmospheric eV
Amand Faessler, München, 24. November OSCILLATIONS AND DOUBLE BETA DECAY Hierarchies: m ν Normal m 3 m 2 m 1 m 1 <<m 2 <<m 3 Inverted m 2 m 1 m 3 m 3 <<m 1 <<m 2 Bilenky, Faessler, Simkovic P. R. D 70(2004)33003
Amand Faessler, München, 24. November BilenkyBilenky, Faessler, Simkovic:, Phys.Rev. D70:033003(2004) : hep-ph/ FaesslerSimkovic
Amand Faessler, München, 24. November (Bild) Bilenky, Faessler, Simkovic:, Phys.Rev. D70:033003(2004) : hep-ph/ Bilenky FaesslerSimkovic
Amand Faessler, München, 24. November The best choice: Quasi-Particle- Quasi-Boson-Approx.: Particle Number non-conserv. (important near closed shells) Unharmonicities Proton-Neutron Pairing Pairing
Amand Faessler, München, 24. November
Amand Faessler, München, 24. November Nucleus 48 Ca 76 Ge 82 Se 96 Zr 100 Mo 116 Cd 128 Te 130 Te 134 Xe 136 Xe 150 Nd T1/2 (exp) [years] > > > > > > > > > > > Ref.:YouKlap- dor Elli- ott Arn.EjiriDane- vich Ales. Ber.Stau dt Klime nk. [eV]<22.<0.47<8.7<40.<2.8<3.8<17.<3.2<27.<3.8<7.2 η ~m(p)/M( <200.<0.79<15.<79.<6.0<7.0<27.<4.9<38.<3.5<13. λ‘(111)[10 -4 ] <8.9<1.1<5.0<9.4<2.8<3.4<5.8<2.4<6.8<2.1<3.8 Only for Majorana ν possible.
Amand Faessler, München, 24. November Contribution of Different Multipoles to M(0 )
Amand Faessler, München, 24. November g(A)**4 = 1.25**4 = 2.44 fit to 2 RodinRodin, Faessler, Simkovic, Vogel, Mar 2005 nucl-th/ FaesslerSimkovicVogel
Amand Faessler, München, 24. November Overlap of Wave Functions of the not involved core of the initial and final nuclei. Benes, Faessler, Simkovic Benesch, Faessler, Simkovic Preliminary (July 2005) Ge76
Amand Faessler, München, 24. November Overlap of the core added to the 0 decay and new 2 -decay data (NEMO).
Amand Faessler, München, 24. November R-QRPA-0 -Decay Nuclear Matrix Elements with Lipkin-Nogami and and Overlap of the Core. No experimental error included Closed Shells involved Benesch, Faessler, Simkovic (July 2005) Preliminary 20; 50; 82
Amand Faessler, München, 24. November Renormalized QRPA with Lipkin-Nogami including the experimental error of the 2 decay
Amand Faessler, München, 24. November Relation of M(0 ) on M(2 ) independent on Size of Basis ( 21 and 9 or 13 levels) Ratio M(0 )/M(2 ) with g(pp) fixed to M(2 ) independent of basis size
Amand Faessler, München, 24. November (QRPA) 2.34 (RQRPA) Muto corrected
Amand Faessler, München, 24. November M0ν (QRPA) O. Civitarese, J. Suhonen, NPA 729 (2003) 867 Nucleus their(QRPA, 1.254) our(QRPA, 1.25) 76Ge (0.12) 100Mo (0.10) 130Te (0.47) 136Xe (0.20) g(pp) fitted differently Higher order terms of nucleon Current included differently with Gaussian form factors based on a special quark model ( Kadkhikar, Suhonen, Faessler, Nucl. Phys. A29(1991)727). Does neglect pseudoscalar coupling (see eq. (19a)), which is an effect of 30%. We: Higher order currents from Towner and Hardy. What is the basis and the dependence on the size of the basis? Short-range Brueckner Correlations not included. But finite size effects included. We hope to understand the differences. But for that we need to know their input parameters ( g(pp), g(ph),basis, …)!
Amand Faessler, München, 24. November Neutrinoless Double Beta Decay The Double Beta Decay: β-β β-β- e-e- e-e- E>2m e x xxx Gamov-Teller single beta decay in the second leg fitted with g(pp) by Suhonen et al.. Underestimates the first leg. We fit the full 2 decay by adjusting g(pp).
Amand Faessler, München, 24. November Fit of g(pp) to the single beta (2. leg) and the 2 double beta decay (small and large basis). Fit to 2 Fit to 1+ to 0+
Amand Faessler, München, 24. November
Amand Faessler, München, 24. November Uncorrelated and Correlated Relative N-N-Wavefunction in the N-N-Potential Short Range Correlations
Amand Faessler, München, 24. November Uncorrelated and Correlated Relative N-N-Wavefunction in the N-N-Potential Short Range Correlations
Amand Faessler, München, 24. November Jastrow-Function multiplying the relative N-N wavefunction (Parameters from Miller and Spencer, Ann. Phys 1976)
Amand Faessler, München, 24. November Influence of Short Range Correlations (Parameters from Miller and Spencer, Ann. Phys 1976)
Amand Faessler, München, 24. November Contribution of Different Multipoles to the zero Neutrino Matrixelements in QRPA s.r.c. = short range correlations h.o.t. = higher order currents Different Multipoles a) 76 Ge small model space ( 9 levels) b) 76 Ge large model space (21 levels) C) 100 Mo small model space ( 13 levels) d) 100 Mo large model space ( 21 levels)
Amand Faessler, München, 24. November Comparison of 2 Half Lives with Shell model Results from Strassburg
Amand Faessler, München, 24. November Decay Matrix Elements in R-QRPA and the Strassburg Shell Model
Amand Faessler, München, 24. November Contribution of GT 1+ States and the Sum of all other States to M(0 )
Amand Faessler, München, 24. November Multipole Decomposition of M(0 ) in QRPA
Amand Faessler, München, 24. November
Amand Faessler, München, 24. November
Amand Faessler, München, 24. November M0ν (R-QRPA; 1.25) S. Stoica, H.V. Klapdor- Kleingrothaus, NPA 694 (2001) 269 A similar procedure of fixing g(pp) to the two neutrino decay in one basis (?). Higher order terms of nucleon current not considered Nucleus l.m.s s.m.s our 76Ge 1.87 (l=12) 3.74 (s=9) 2.40(.12) 100Mo (.15) 130Te (.46) 136Xe (.23) Model space dependence ? Disagreement also between his tables and figures for R-QRPA and S-QRPA!
Amand Faessler, München, 24. November Neutrinoless Double Beta Decay Matrix Elements EVZ-88 = Engel, Vogel, Zirnbauer; MBK-89 = Muto. Bender, Klapdor; T-91 Tomoda; SKF-91 = Suhonen, Khadkikar, Faessler; PSVF-96 = Pantis, Simkovic, Vergados, Faessler; AS-98 = Aunola, Suhonen; SPVF-99 = Simkovic, Pantis, Vergados, Faessler; SK-01 = Stoica, Klapdor; CS-03= Civitarese, Suhonen.
Amand Faessler, München, 24. November Neutrinoless Double Beta Decay Matrix Elements EVZ-88 = Engel, Vogel, Zirnbauer; MBK-89 = Muto. Bender, Klapdor; T-91 Tomoda; SKF-91 = Suhonen, Khadkikar, Faessler; PSVF-96 = Pantis, Simkovic, Vergados, Faessler; AS-98 = Aunola, Suhonen; SPVF-99 = Simkovic, Pantis, Vergados, Faessler; SK-01 = Stoica, Klapdor; CS-03= Civitarese, Suhonen.
Amand Faessler, München, 24. November Neutrinoless Double Beta Decay Matrix Elements EVZ-88 = Engel, Vogel, Zirnbauer; MBK-89 = Muto. Bender, Klapdor; T-91 Tomoda; SKF-91 = Suhonen, Khadkikar, Faessler; PSVF-96 = Pantis, Simkovic, Vergados, Faessler; AS-98 = Aunola, Suhonen; SPVF-99 = Simkovic, Pantis, Vergados, Faessler; SK-01 = Stoica, Klapdor; CS-03= Civitarese, Suhonen.
Amand Faessler, München, 24. November Neutrinoless Double Beta Decay and the Sensitivity to the Neutrino Mass of planed Experiments expt.T 1/2 [y] [eV] DAMA ( 136 Xe) 1.2 X MAJORANA ( 76 Ge) 3 X EXO 10t ( 136 Xe) 4 X GEM ( 76 Ge)7 X GERDA II ( 76 Ge) 2 X CANDLES ( 48 Ca) 1 X MOON ( 100 Mo) 1 X
Amand Faessler, München, 24. November Neutrinoless Double Beta Decay and the Sensitivity to the Neutrino Mass of planed Experiments expt.T 1/2 [y] [eV] XMASS ( 136 Xe) 3 X CUORE ( 130 Te) 2 X COBRA ( 116 Cd) 1 X DCBA ( 100 Mo) 2 X DCBA ( 82 Se)3 X CAMEO ( 116 Cd) 1 X DCBA ( 150 Nd) 1 X
Amand Faessler, München, 24. November Neutrino-Masses from the 0 ν and Neutrino Oscillations Solar Neutrinos (CL, Ga, Kamiokande, SNO) Atmospheric ν (Super-Kamiokande) Reactor ν (Chooz; KamLand) with CP-Invariance:
Amand Faessler, München, 24. November Solar Neutrinos (+KamLand): (KamLand) Atmospheric Neutrinos: (Super-Kamiok.)
Amand Faessler, München, 24. November Reactor Neutrinos (Chooz): CP
Amand Faessler, München, 24. November ν 1, ν 2, ν 3 Mass States ν e, ν μ, ν τ Flavor States Theta(1,2) = 32.6 degrees Solar + KamLand Theta(1,3) < 13 degrees Chooz Theta(2,3) = 45 degrees S-Kamiokande
Amand Faessler, München, 24. November OSCILLATIONS AND DOUBLE BETA DECAY Hierarchies: m ν Normal m 3 m 2 m 1 m 1 <<m 2 <<m 3 Inverted m 2 m 1 m 3 m 3 <<m 1 <<m 2 Bilenky, Faessler, Simkovic P. R. D 70(2004)33003
Amand Faessler, München, 24. November (Bild)
Amand Faessler, München, 24. November Summary: Accuracy of Neutrino Masses from 0 Fit the g(pp) by in front of the particle- particle NN matrixelement include exp. Error of . Calculate with these g(pp) for three different forces (Bonn, Nijmegen, Argonne) and three different basis sets (small about 2 shells, intermediate 3 shells and large 5 shells) the Use QRPA and R-QRPA (Pauli principle) Use: g(A) = 1.25 and 1.00 Error of matrixelement 20 to 40 % (96Zr larger; largest errors from experim. values of T(1/2, 2 )) Core overlap reduction by ~0.90 (preliminary)
Amand Faessler, München, 24. November Summary: Results from Klapdor et al. from Ge76 with R-QRPA (no error of theory included): 0.15 to 0.72 [eV]. ( Ge Exp. Klapdor) 0.47 [eV] [GeV] > 5600 [GeV] SUSY+R-Parity: ‘(1,1,1) < 1.1*10**(-4) Mainz-Troisk, Triton Decay: m( 2.2 [eV] Astro Physics (SDSS): Sum{ m( ) } < ~0.5 to 2 [eV] Do not take democratic averaged matrix elements !!!
Amand Faessler, München, 24. November Open Problems: 1. Overlapping but slightly different Hilbert spaces in intermediate Nucleus for QRPA from intial and from final nucleus. 2. Pairing does not conserve Nucleon number. Problem at closed shells. Particle projection. Lipkin-Nogami, 3. Deformed nuclei? (e.g.: 150 Nd ) THE END β-β pn -1 np -1
Amand Faessler, München, 24. November Summary: Accuracy of Neutrino Masses by the Double Beta Decay Dirac versus Majorana Neutrinos Grand Unified Theories (GUT‘s), R-Parity violatingSupersymmetry → Majorana- Neutrino = Antineutrinos <m( eV; ‘ < 1.1*10**(-4) Direct measurement in the Tritium Beta Decay in Mainz and Troisk Klapdor et al.: = 0.1 – 0.9 [eV] ; R-QRPA: 0.15 – 0.72 [eV] nn nn P P PP d d d d u u u u u u
Amand Faessler, München, 24. November Neutrino Masses and Supersymmetry R-Parity violating Supersymmetry mixes Neutrinos with Neutrinalinos (Photinos, Zinos, Higgsinos) and Tau-Susytau-Loops, Bottom-Susybottom-Loops → Majorana-Neutrinos (Faessler, Haug, Vergados: Phys. Rev. D ) m(neutrino1) = ~0 – 0.02 [eV] m(neutrino2) = – 0.04 [eV] m(neutrino3) = 0.03 – 1.03 [eV] 0-Neutrino Double Beta decay = [eV] ββ Experiment: < 0.47 [eV] Klapdor et al.: = 0.1 – 0.9 [eV] Tritium (Otten, Weinheimer, Lobashow) < 2.2 [eV] THE END
Amand Faessler, München, 24. November ν -Mass-Matrix by Mixing with: Diagrams on the Tree level: Majorana Neutrinos:
Amand Faessler, München, 24. November Loop Diagrams: Figure 0.1: quark-squark 1-loop contribution to m v X X Majorana Neutrino
Amand Faessler, München, 24. November Figure 0.2: lepton-slepton 1-loop contribution to m v (7x7) Mass-Matrix: X X Block Diagonalis.
Amand Faessler, München, 24. November x 7 Neutrino-Massmatrix: Basis: Eliminate Neutralinos in 2. Order: separabel { Mass Eigenstate Vector in flavor space for 2 independent and possible
Amand Faessler, München, 24. November Super-K:
Amand Faessler, München, 24. November Horizontal U(1) Symmetry U(1) Field U(1) charge R-Parity breaking terms must be without U(1) charge change (U(1) charge conservat.) Symmetry Breaking:
Amand Faessler, München, 24. November How to calculate λ ‘ i33 (and λ i33 ) from λ ‘ 333 ? U(1) charge conserved! 1,2,3 = families
Amand Faessler, München, 24. November g PP fixed to 2 νββ; M(0 ) [MeV**(-1)] Each point: (3 basis sets) x (3 forces) = 9 values
Amand Faessler, München, 24. November Assuming only Electron Neutrinos: (ES) 2.35*10 6 [ Φ ] (CC) 1.76*10 6 [ Φ ] (NC) 5.09*10 6 [ Φ ] Including Muon and Tauon ν : Φ(νe)Φ(νe)=1.76*10 6 (CC) Φ(νμ+ντ)Φ(νμ+ντ)=3.41*10 6 (CC+ES) Φ(νe+νμ+ντ)Φ(νe+νμ+ντ)=5.09*10 6 (NC) Φ ( ν -Bahcall)=5.14*10 6
Amand Faessler, München, 24. November