Introduction into Simulation Basic Simulation Modeling.

Slides:



Advertisements
Similar presentations
Waiting Line Management
Advertisements

3.6 Support Vector Machines
Fundamentals of Probability
Chapter 7 Constructors and Other Tools. Copyright © 2006 Pearson Addison-Wesley. All rights reserved. 7-2 Learning Objectives Constructors Definitions.
© 2008 Pearson Addison Wesley. All rights reserved Chapter Seven Costs.
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
McGraw-Hill/Irwin Copyright © 2013 by The McGraw-Hill Companies, Inc. All rights reserved. A PowerPoint Presentation Package to Accompany Applied Statistics.
Part 3 Probabilistic Decision Models
STATISTICS Random Variables and Distribution Functions
Properties Use, share, or modify this drill on mathematic properties. There is too much material for a single class, so you’ll have to select for your.
UNITED NATIONS Shipment Details Report – January 2006.
Properties of Real Numbers CommutativeAssociativeDistributive Identity + × Inverse + ×
Lecture 2 ANALYSIS OF VARIANCE: AN INTRODUCTION
The basics for simulations
Turing Machines.
Introduction Queuing is the study of waiting lines, or queues.
Hash Tables.
Discrete Event (time) Simulation Kenneth.
Hypothesis Tests: Two Independent Samples
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
1..
Simulation - An Introduction Simulation:- The technique of imitating the behaviour of some situation or system (economic, military, mechanical, etc.) by.
25 seconds left…...
Introduction to Queuing Theory
Statistical Inferences Based on Two Samples
Chapter 15: Quantitatve Methods in Health Care Management Yasar A. Ozcan 1 Chapter 15. Simulation.
Chapter 8 Estimation Understandable Statistics Ninth Edition
PSSA Preparation.
1 Decidability continued…. 2 Theorem: For a recursively enumerable language it is undecidable to determine whether is finite Proof: We will reduce the.
Simulating Single server queuing models. Consider the following sequence of activities that each customer undergoes: 1.Customer arrives 2.Customer waits.
Modeling & Simulation. System Models and Simulation Framework for Modeling and Simulation The framework defines the entities and their Relationships that.
Statistics review of basic probability and statistics.
Output Data Analysis. How to analyze simulation data? simulation –computer based statistical sampling experiment –estimates are just particular realizations.
Classification of Simulation Models
Simulation with ArenaChapter 2 – Fundamental Simulation Concepts Discrete Event “Hand” Simulation of a GI/GI/1 Queue.
Simulation Waiting Line. 2 Introduction Definition (informal) A model is a simplified description of an entity (an object, a system of objects) such that.
CPSC 531: DES Overview1 CPSC 531:Discrete-Event Simulation Instructor: Anirban Mahanti Office: ICT Class Location:
Lab 01 Fundamentals SE 405 Discrete Event Simulation
Basic Simulation Modeling II
Chapter 1 Introduction to Simulation
Simulation Examples ~ By Hand ~ Using Excel
1 Performance Evaluation of Computer Networks: Part II Objectives r Simulation Modeling r Classification of Simulation Modeling r Discrete-Event Simulation.
Verification & Validation
Modeling & Simulation: An Introduction Some slides in this presentation have been copyrighted to Dr. Amr Elmougy.
Entities and Objects The major components in a model are entities, entity types are implemented as Java classes The active entities have a life of their.
Discrete Event (time) Simulation. What is a simulation? “Simulation is the process of designing a model of a real system and conducting experiments with.
Fall 2011 CSC 446/546 Part 1: Introduction to Simulation.
Chapter 2 Fundamental Simulation Concepts
1 1 Slide Simulation Professor Ahmadi. 2 2 Slide Simulation Chapter Outline n Computer Simulation n Simulation Modeling n Random Variables and Pseudo-Random.
Network Performance modelling and simulation
(C) J. M. Garrido1 Objects in a Simulation Model There are several objects in a simulation model The activate objects are instances of the classes that.
Queuing Theory.  Queuing Theory deals with systems of the following type:  Typically we are interested in how much queuing occurs or in the delays at.
Advantages of simulation 1. New policies, operating procedures, information flows and son on can be explored without disrupting ongoing operation of the.
Chapter 2 Basic Simulation Modeling
ENM 307 Simulation Department of Industrial Engineering Anadolu University SPRING 2016 Chapter 1 Basic Simulation Modeling Onur Kaya END 201, Ext: 6439.
 Simulation enables the study of complex system.  Simulation is a good approach when analytic study of a system is not possible or very complex.  Informational,
Introduction The objective of simulation – Analysis the system (Model) Analytically the model – a description of some system intended to predict the behavior.
Simulation Examples And General Principles Part 2
Modeling and Simulation
Chapter 1 What is Simulation?. Fall 2001 IMSE643 Industrial Simulation What’s Simulation? Simulation – A broad collection of methods and applications.
Introduction To Modeling and Simulation 1. A simulation: A simulation is the imitation of the operation of real-world process or system over time. A Representation.
Modelling & Simulation of Semiconductor Devices Lecture 1 & 2 Introduction to Modelling & Simulation.
Modeling and Simulation (An Introduction)
ADVANTAGES OF SIMULATION
Simulation Department of Industrial Engineering Anadolu University
Basic Simulation Modeling II
Onur Kaya END 201, Ext: 6439 ENM 307 Simulation Department of Industrial Engineering Anadolu University SPRING 2018 Chapter.
Discrete Event “Hand” Simulation of a GI/GI/1 Queue
MECH 3550 : Simulation & Visualization
MECH 3550 : Simulation & Visualization
Presentation transcript:

Introduction into Simulation Basic Simulation Modeling

The Nature of Simulation || WS 2008 || Dr. Verena Schmid || PR KFK PM/SCM/TL Praktikum Simulation I2

definitions simulation –imitate operations of real-world facilities or processes system –facility or process of interest –assumptions needed (mathematical, logical) model –set of assumptions –used to gain understanding how corresponding system works –simple enough? → solve analytically to obtain exact information –mostly too complex → evaluate model numerically using simulation and estimate desired true characteristics || WS 2008 || Dr. Verena Schmid || PR KFK PM/SCM/TL Praktikum Simulation I 3

System, Models and Simulation || WS 2008 || Dr. Verena Schmid || PR KFK PM/SCM/TL Praktikum Simulation I4

system set of entities (people, machine, etc.) that (inter)act –example [bank]: tellers, customers, loan officers state of system –collection of variables to describe system at particular time –example [bank]: number of busy tellers, number of customers in the bank, arrival time of each customer entities –characterized by data values (attributes) || WS 2008 || Dr. Verena Schmid || PR KFK PM/SCM/TL Praktikum Simulation I 5

types of system discrete system –state variables change instantaneously at separated points in time –example: bank number of customers changes: new customer arrives, service finished continuous system –state variables change continuously with respect to time –example: airplane moving through air position, velocity can change continuously || WS 2008 || Dr. Verena Schmid || PR KFK PM/SCM/TL Praktikum Simulation I 6

different ways to study a system || WS 2008 || Dr. Verena Schmid || PR KFK PM/SCM/TL Praktikum Simulation I 7 system experiment with actual system experiment with model of the system mathematical model physical model analytical solution Simulation

classification of simulation models || WS 2008 || Dr. Verena Schmid || PR KFK PM/SCM/TL Praktikum Simulation I 8 static vs. dynamic simulation models –static model: time plays no role –dynamic model: represents model as it evolves over time deterministic vs. stochastic simulation models –deterministic: no probabilistic (i.e. random) components –stochastic: random components, output itself is random (estimate of true models characteristics) continuous vs. discrete simulation models –continuous: state variables change instantaneously –discrete: changes only happen at discrete point in time DSM discrete event simulation models

Discrete Event Simulation || WS 2008 || Dr. Verena Schmid || PR KFK PM/SCM/TL Praktikum Simulation I9

discrete event simulation system evolves over time state variables change at separate points in time only –whenever an event occurs example [bank]: (single server, estimate average waiting time in queue) –state variables: status of server (idle or busy) number of customers in queue (or in system) time of arrival of each customer (for calculation of waiting time) –events: customer arrives, service complete (customer leaves) || WS 2008 || Dr. Verena Schmid || PR KFK PM/SCM/TL Praktikum Simulation I 10

simulation clock time-advance mechanism –keep track of current value of simulated time –no explicit unit of measurement → same unit as input parameters (be consistent!!) two approaches –next-event time advance simulation clock initialized at time 0 times of future events are determined clock is advanced to the next future event (nothing happens/changes between) –fixed-increment time advance || WS 2008 || Dr. Verena Schmid || PR KFK PM/SCM/TL Praktikum Simulation I 11

Simulation of Single-Server Queuing System (M/M/1) || WS 2008 || Dr. Verena Schmid || PR KFK PM/SCM/TL Praktikum Simulation I12

M/M/1 interarrival times (service times) –A 1, A 2, A 3, …. (S 1, S 2, S 3, ….) –iid (independent and identically distributed) random variables arriving customer (served FCFS/FIFO) –who finds the server idle: is served immediately –who finds the server busy: joins the end of a single queue upon completion of service –queue: first customer in queue will be serviced –no queue: server is idle again start of simulation: empty and idle || WS 2008 || Dr. Verena Schmid || PR KFK PM/SCM/TL Praktikum Simulation I 13

M/M/1 performance measures –expected average delay in queue d(n) –expected average number of customers in queue q(n) –expected utilization of server u(n) || WS 2008 || Dr. Verena Schmid || PR KFK PM/SCM/TL Praktikum Simulation I 14

delay d(n) estimator of systems performance from customers point of view on a given run: observed average delay –depends on random service and arrival times –is random itself – estimator for d(n) D i customer delays on a very long (infinite) run delay of a customer can also be equal to zero (D 1 = 0) || WS 2008 || Dr. Verena Schmid || PR KFK PM/SCM/TL Praktikum Simulation I 15

number in queue q(n) customers in queue customers in system (not being served) again: observation is just an estimator of true expected value p i expected proportion of time there are i customers in queue T(n)time necessary to observe n delays in queue T i total time during the simulation the queue is of length i || WS 2008 || Dr. Verena Schmid || PR KFK PM/SCM/TL Praktikum Simulation I 16

utilization u(n) measures how busy server is expected utilization = expected proportion of time server is busy (not idle) busy function estimator || WS 2008 || Dr. Verena Schmid || PR KFK PM/SCM/TL Praktikum Simulation I 17

performance measures discrete time statistic –average delay (defined relative to discrete random variables D i ) continuous-time statistic –average number in queue –utilization (defined on continuous random variables Q(t) and B(t)) other statistics than just averages –minimum, maximum, proportion of time there’re at least 5 customer in queue || WS 2008 || Dr. Verena Schmid || PR KFK PM/SCM/TL Praktikum Simulation I 18

simulation “by hand” necessary random variables (generated from their corresponding probability distribution) interarrival times A 1 = 0.4A 2 = 1.2A 3 = 0.5A 4 = 1.7A 5 = 0.2 A 6 = 1.6A 7 = 0.2A 8 = 1.4A 9 = 1.9 service times S 1 = 2.0S 2 = 0.7S 3 = 0.2S 4 = 1.1S 5 = 3.7 S 6 = 0.6 initializiation (t = 0) system starts emtpy (no customers yet) and idle (server not busy) || WS 2008 || Dr. Verena Schmid || PR KFK PM/SCM/TL Praktikum Simulation I 19

0 simulation “by hand” || WS 2008 || Dr. Verena Schmid || PR KFK PM/SCM/TL Praktikum Simulation I 20 A 1 = 0.4 A 2 = 1.2 A 3 = 0.5 A 4 = 1.7 A 5 = 0.2 A 6 = 1.6 A 7 = 0.2 A 8 = 1.4 A 9 = 1.9 S 1 = 2.0 S 2 = 0.7 S 3 = 0.2 S 4 = 1.1 S 5 = 3.7 S 6 = 0.6 t Events 15 9 t t B(t) Q(t) e a 1 = 0.4 Arrivals Departure initialize system at t = 0

simulation “by hand” || WS 2008 || Dr. Verena Schmid || PR KFK PM/SCM/TL Praktikum Simulation I 21 A 1 = 0.4 A 2 = 1.2 A 3 = 0.5 A 4 = 1.7 A 5 = 0.2 A 6 = 1.6 A 7 = 0.2 A 8 = 1.4 A 9 = 1.9 S 1 = 2.0 S 2 = 0.7 S 3 = 0.2 S 4 = 1.1 S 5 = 3.7 S 6 = 0.6 t Events t t B(t) Q(t) e a 1 = 0.4 e d 1 = 2.4 e a 2 = 1.6 Arrivals Departure

simulation “by hand” || WS 2008 || Dr. Verena Schmid || PR KFK PM/SCM/TL Praktikum Simulation I 22 A 1 = 0.4 A 2 = 1.2 A 3 = 0.5 A 4 = 1.7 A 5 = 0.2 A 6 = 1.6 A 7 = 0.2 A 8 = 1.4 A 9 = 1.9 S 1 = 2.0 S 2 = 0.7 S 3 = 0.2 S 4 = 1.1 S 5 = 3.7 S 6 = 0.6 t Events t t B(t) Q(t) e a 1 = 0.4 e d 1 = 2.4 e a 2 = 1.6e a 3 = 2.1 Arrivals Departure

simulation “by hand” || WS 2008 || Dr. Verena Schmid || PR KFK PM/SCM/TL Praktikum Simulation I 23 A 1 = 0.4 A 2 = 1.2 A 3 = 0.5 A 4 = 1.7 A 5 = 0.2 A 6 = 1.6 A 7 = 0.2 A 8 = 1.4 A 9 = 1.9 S 1 = 2.0 S 2 = 0.7 S 3 = 0.2 S 4 = 1.1 S 5 = 3.7 S 6 = 0.6 t Events t t B(t) Q(t) e a 1 = 0.4 e d 1 = 2.4 e a 2 = 1.6e a 3 = 2.1e a 4 = 3.8 Arrivals Departure

simulation “by hand” || WS 2008 || Dr. Verena Schmid || PR KFK PM/SCM/TL Praktikum Simulation I 24 A 1 = 0.4 A 2 = 1.2 A 3 = 0.5 A 4 = 1.7 A 5 = 0.2 A 6 = 1.6 A 7 = 0.2 A 8 = 1.4 A 9 = 1.9 S 1 = 2.0 S 2 = 0.7 S 3 = 0.2 S 4 = 1.1 S 5 = 3.7 S 6 = 0.6 t Events t t B(t) Q(t) e a 1 = 0.4 e d 1 = 2.4 e a 2 = 1.6e a 3 = 2.1 e d 2 = 3.1 e a 4 = 3.8 Arrivals Departure

simulation “by hand” || WS 2008 || Dr. Verena Schmid || PR KFK PM/SCM/TL Praktikum Simulation I 25 A 1 = 0.4 A 2 = 1.2 A 3 = 0.5 A 4 = 1.7 A 5 = 0.2 A 6 = 1.6 A 7 = 0.2 A 8 = 1.4 A 9 = 1.9 S 1 = 2.0 S 2 = 0.7 S 3 = 0.2 S 4 = 1.1 S 5 = 3.7 S 6 = 0.6 t Events t t B(t) Q(t) e a 1 = 0.4 e d 1 = 2.4 e a 2 = 1.6e a 3 = 2.1 e d 2 = 3.1 e d 3 = 3.3 e a 4 = 3.8 Arrivals Departure

simulation “by hand” || WS 2008 || Dr. Verena Schmid || PR KFK PM/SCM/TL Praktikum Simulation I 26 A 1 = 0.4 A 2 = 1.2 A 3 = 0.5 A 4 = 1.7 A 5 = 0.2 A 6 = 1.6 A 7 = 0.2 A 8 = 1.4 A 9 = 1.9 S 1 = 2.0 S 2 = 0.7 S 3 = 0.2 S 4 = 1.1 S 5 = 3.7 S 6 = 0.6 t Events t t B(t) Q(t) e a 1 = 0.4 e d 1 = 2.4 e a 2 = 1.6e a 3 = 2.1 e d 2 = 3.1 e d 3 = 3.3 e a 4 = 3.8 Arrivals Departure

simulation “by hand” || WS 2008 || Dr. Verena Schmid || PR KFK PM/SCM/TL Praktikum Simulation I 27 A 1 = 0.4 A 2 = 1.2 A 3 = 0.5 A 4 = 1.7 A 5 = 0.2 A 6 = 1.6 A 7 = 0.2 A 8 = 1.4 A 9 = 1.9 S 1 = 2.0 S 2 = 0.7 S 3 = 0.2 S 4 = 1.1 S 5 = 3.7 S 6 = 0.6 t Events t t B(t) Q(t) e a 1 = 0.4 e d 1 = 2.4 e a 2 = 1.6e a 3 = 2.1 e d 2 = 3.1 e d 3 = 3.3 e a 4 = 3.8 e d 4 = 4.9 e a 5 = 4.0 Arrivals Departure

simulation “by hand” || WS 2008 || Dr. Verena Schmid || PR KFK PM/SCM/TL Praktikum Simulation I 28 A 1 = 0.4 A 2 = 1.2 A 3 = 0.5 A 4 = 1.7 A 5 = 0.2 A 6 = 1.6 A 7 = 0.2 A 8 = 1.4 A 9 = 1.9 S 1 = 2.0 S 2 = 0.7 S 3 = 0.2 S 4 = 1.1 S 5 = 3.7 S 6 = 0.6 t Events t t B(t) Q(t) e a 1 = 0.4 e d 1 = 2.4 e a 2 = 1.6e a 3 = 2.1 e d 2 = 3.1 e d 3 = 3.3 e a 4 = 3.8 e d 4 = 4.9 e a 5 = 4.0 e a 6 = 5.6 Arrivals Departure

simulation “by hand” || WS 2008 || Dr. Verena Schmid || PR KFK PM/SCM/TL Praktikum Simulation I 29 A 1 = 0.4 A 2 = 1.2 A 3 = 0.5 A 4 = 1.7 A 5 = 0.2 A 6 = 1.6 A 7 = 0.2 A 8 = 1.4 A 9 = 1.9 S 1 = 2.0 S 2 = 0.7 S 3 = 0.2 S 4 = 1.1 S 5 = 3.7 S 6 = 0.6 t Events t t B(t) Q(t) e a 1 = 0.4 e d 1 = 2.4 e a 2 = 1.6e a 3 = 2.1 e d 2 = 3.1 e d 3 = 3.3 e a 4 = 3.8 e d 4 = 4.9 e a 5 = 4.0 e d 5 = 8.6 e a 6 = 5.6 Arrivals Departure

simulation “by hand” || WS 2008 || Dr. Verena Schmid || PR KFK PM/SCM/TL Praktikum Simulation I 30 t Events t t B(t) Q(t) e a 1 = 0.4 e d 1 = 2.4 e a 2 = 1.6e a 3 = 2.1 e d 2 = 3.1 e d 3 = 3.3 e a 4 = 3.8 e d 4 = 4.9 e a 5 = 4.0 e d 5 = 8.6 e a 6 = 5.6 e a 7 = 5.8 e a 8 = 7.2 Arrivals Departure

average waiting time d(n) || WS 2008 || Dr. Verena Schmid || PR KFK PM/SCM/TL Praktikum Simulation I31 t Events e a 1 = 0.4 e d 1 = 2.4 e a 2 = 1.6e a 3 = 2.1 e d 2 = 3.1 e d 3 = 3.3 e a 4 = 3.8 e d 4 = 4.9 e a 5 = 4.0 e d 5 = 8.6 e a 6 = 5.6 e a 7 = 5.8 e a 8 = 7.2 Arrivals Departure xxx

average number in queue q(n) || WS 2008 || Dr. Verena Schmid || PR KFK PM/SCM/TL Praktikum Simulation I32 Q(t)

average utilization u(n) || WS 2008 || Dr. Verena Schmid || PR KFK PM/SCM/TL Praktikum Simulation I33 B(t) fraction of time server is busy

Necessary Steps for Simulation || WS 2008 || Dr. Verena Schmid || PR KFK PM/SCM/TL Praktikum Simulation I34

|| WS 2008 || Dr. Verena Schmid || PR KFK PM/SCM/TL Praktikum Simulation I 35 formulate problem and plan the study collect data and define model collect data and define model assumptions still valid construct a computer program & verify test runs model valid design experiments make production runs analyze output data present results yes no yes

Advantages and Disadvantages of Simulation || WS 2008 || Dr. Verena Schmid || PR KFK PM/SCM/TL Praktikum Simulation I36

advantages complex models cannot be solved analytically → only simulation possible allows to estimate the performance of an existing system under some projected set of operating conditions alternative proposed system designs (operating policies) can be compared easily better control over experimental conditions study system over long time frame || WS 2008 || Dr. Verena Schmid || PR KFK PM/SCM/TL Praktikum Simulation I 37

disadvantages each run of a stochastic model produces only estimates of true measures → several independent runs (or one very long one) needed expensive and time consuming need to make sure the model is valid || WS 2008 || Dr. Verena Schmid || PR KFK PM/SCM/TL Praktikum Simulation I 38