J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats.

Slides:



Advertisements
Similar presentations
Numbers Treasure Hunt Following each question, click on the answer. If correct, the next page will load with a graphic first – these can be used to check.
Advertisements

1 A B C
Scenario: EOT/EOT-R/COT Resident admitted March 10th Admitted for PT and OT following knee replacement for patient with CHF, COPD, shortness of breath.
AGVISE Laboratories %Zone or Grid Samples – Northwood laboratory
Variations of the Turing Machine
Angstrom Care 培苗社 Quadratic Equation II
AP STUDY SESSION 2.
1
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Multiplication X 1 1 x 1 = 1 2 x 1 = 2 3 x 1 = 3 4 x 1 = 4 5 x 1 = 5 6 x 1 = 6 7 x 1 = 7 8 x 1 = 8 9 x 1 = 9 10 x 1 = x 1 = x 1 = 12 X 2 1.
Division ÷ 1 1 ÷ 1 = 1 2 ÷ 1 = 2 3 ÷ 1 = 3 4 ÷ 1 = 4 5 ÷ 1 = 5 6 ÷ 1 = 6 7 ÷ 1 = 7 8 ÷ 1 = 8 9 ÷ 1 = 9 10 ÷ 1 = ÷ 1 = ÷ 1 = 12 ÷ 2 2 ÷ 2 =
David Burdett May 11, 2004 Package Binding for WS CDL.
1 RA I Sub-Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Casablanca, Morocco, 20 – 22 December 2005 Status of observing programmes in RA I.
Process a Customer Chapter 2. Process a Customer 2-2 Objectives Understand what defines a Customer Learn how to check for an existing Customer Learn how.
CALENDAR.
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt BlendsDigraphsShort.
Chapter 7 Sampling and Sampling Distributions
1 Click here to End Presentation Software: Installation and Updates Internet Download CD release NACIS Updates.
The 5S numbers game..
Chapter 7: Steady-State Errors 1 ©2000, John Wiley & Sons, Inc. Nise/Control Systems Engineering, 3/e Chapter 7 Steady-State Errors.
Break Time Remaining 10:00.
The basics for simulations
Factoring Quadratics — ax² + bx + c Topic
EE, NCKU Tien-Hao Chang (Darby Chang)
Turing Machines.
Table 12.1: Cash Flows to a Cash and Carry Trading Strategy.
PP Test Review Sections 6-1 to 6-6
MM4A6c: Apply the law of sines and the law of cosines.
Regression with Panel Data
Exarte Bezoek aan de Mediacampus Bachelor in de grafische en digitale media April 2014.
Computer vision: models, learning and inference
Copyright © 2012, Elsevier Inc. All rights Reserved. 1 Chapter 7 Modeling Structure with Blocks.
1 RA III - Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Buenos Aires, Argentina, 25 – 27 October 2006 Status of observing programmes in RA.
1..
CONTROL VISION Set-up. Step 1 Step 2 Step 3 Step 5 Step 4.
Adding Up In Chunks.
MaK_Full ahead loaded 1 Alarm Page Directory (F11)
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt Synthetic.
Artificial Intelligence
When you see… Find the zeros You think….
1 Using Bayesian Network for combining classifiers Leonardo Nogueira Matos Departamento de Computação Universidade Federal de Sergipe.
Before Between After.
Subtraction: Adding UP
: 3 00.
5 minutes.
1 hi at no doifpi me be go we of at be do go hi if me no of pi we Inorder Traversal Inorder traversal. n Visit the left subtree. n Visit the node. n Visit.
1 Let’s Recapitulate. 2 Regular Languages DFAs NFAs Regular Expressions Regular Grammars.
Speak Up for Safety Dr. Susan Strauss Harassment & Bullying Consultant November 9, 2012.
1 Titre de la diapositive SDMO Industries – Training Département MICS KERYS 09- MICS KERYS – WEBSITE.
Essential Cell Biology
Converting a Fraction to %
Resistência dos Materiais, 5ª ed.
Clock will move after 1 minute
PSSA Preparation.
Copyright © 2013 Pearson Education, Inc. All rights reserved Chapter 11 Simple Linear Regression.
Physics for Scientists & Engineers, 3rd Edition
Select a time to count down from the clock above
1.step PMIT start + initial project data input Concept Concept.
9. Two Functions of Two Random Variables
E. Todesco DIPOLES FOR HIGH ENERGY LHC E. Todesco CERN, Geneva Switzerland Acknowledgements: B. Bordini, L. Bottura, G. De Rijk, L. Evans, P. Fessia, J.
1 Dr. Scott Schaefer Least Squares Curves, Rational Representations, Splines and Continuity.
1 Decidability continued…. 2 Theorem: For a recursively enumerable language it is undecidable to determine whether is finite Proof: We will reduce the.
Schutzvermerk nach DIN 34 beachten 05/04/15 Seite 1 Training EPAM and CANopen Basic Solution: Password * * Level 1 Level 2 * Level 3 Password2 IP-Adr.
E. Todesco PROPOSAL OF APERTURE FOR THE INNER TRIPLET E. Todesco CERN, Geneva Switzerland With relevant inputs from colleagues F. Cerutti, S. Fartoukh,
J.P. Koutchouk, L. Rossi, E. Todesco A phase-one LHC luminosity upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats and Superconductors.
E. Todesco LAYOUT FOR INTERACTION REGIONS IN HI LUMI LHC E. Todesco CERN, Geneva Switzerland Acknowledgements: B. Dalena, M. Giovannozzi, R. De Maria,
CERN, 11th November 2011 Hi-lumi meeting
SEMI-ANALYTIC APPROACHES TO MAGNET DESIGN
PROPOSAL OF APERTURE FOR THE INNER TRIPLET
Presentation transcript:

J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats and Superconductors Group Accelerator Technology Department, CERN CERN, 30 th March 2007 MCS Seminar

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 2 CONTENTS Goals of a phase one A flow-chart for determining triplet parameters Limits to long (and large) triplets Geometric aberrations Issues in magnet design 15 m 1.9 Km 41° 49’ 55” N – 88 ° 15’ 07” W 1 Km 40° 53’ 02” N – 72 ° 52’ 32” W

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 3 GOALS OF A PHASE-ONE UPGRADE Staging the LHC luminosity upgrade in two phases Phase one (asap) Aim: not more than ultimate luminosity (~2.5  cm -2 s -1 ), or ways to recover nominal in case that some parameters are not met No modification of detectors – minimal lay-out modifications Larger aperture to reduce part of the limit on intensity due to collimators (presently 40% of nominal) Larger aperture to have stronger focusing (  * ~0.25 m, L~1.5  cm -2 s -1 ) Fast: use Nb-Ti quadrupoles with available cable Phase two (the ‘real’ upgrade) Aim at 10  cm -2 s -1 Upgrade of detectors to tolerate it (6-12 months shut-down ?) Use Nb 3 Sn if available to better manage energy deposition and have shorter triplet Crab cavities or D0 to reduce effect of crossing angle … all other possibilities analysed up to now in CARE-HHH and LARP 15 m 41° 49’ 55” N – 88 ° 15’ 07” W

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 4 GOALS OF A PHASE-ONE UPGRADE Tentative summary of previous optics lay-outs to go to  * = 0.25 m Nb-Ti: black Nb 3 Sn: red 15 m 1.9 Km 41° 49’ 55” N – 88 ° 15’ 07” W 40° 53’ 02” N – 72 ° 52’ 32” W

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 5 GOALS OF A PHASE-ONE UPGRADE We will explore the region between 100 and 150 mm, at the limit of Nb-Ti 15 m 1.9 Km 41° 49’ 55” N – 88 ° 15’ 07” W 40° 53’ 02” N – 72 ° 52’ 32” W

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 6 CONTENTS Goals A flow-chart for determining triplet parameters Limits to long (and large) triplets Geometric aberrations Issues in magnet design 15 m 1.9 Km 41° 49’ 55” N – 88 ° 15’ 07” W 1 Km 40° 53’ 02” N – 72 ° 52’ 32” W

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 7 A flowchart for triplet parameters 15 m 1.9 Km 41° 49’ 55” N – 88 ° 15’ 07” W 1 Km 40° 53’ 02” N – 72 ° 52’ 32” W 46° 14’ 15” N – 6 ° 02’ 51” E

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 8 A flowchart for triplet parameters 1 Km 40° 53’ 02” N – 72 ° 52’ 32” W [F. Zimmermann, HB2006]

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 9 A flowchart: optics requirements 15 m 1.9 Km 41° 49’ 55” N – 88 ° 15’ 07” W 1 Km 40° 53’ 02” N – 72 ° 52’ 32” W 46° 14’ 15” N – 6 ° 02’ 51” E

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 10 A flowchart: optics requirements Triplet structure We fix the distance to the IP to nominal value of 23 m We fix the gaps between magnets to nominal values We keep the same gradient in all magnets Two magnet lengths as free parameters: Q1-Q3 and Q2 We explore triplet lengths from 25 m to 40 m 15 m 1.9 Km 41° 49’ 55” N – 88 ° 15’ 07” W 1 Km 40° 53’ 02” N – 72 ° 52’ 32” W

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 11 A flowchart: optics requirements How to fix the relative lengths of Q1-Q3 and Q2 For each total quadrupole length there is a combination of lengths that gives equal beta function in the two planes We compute four cases, and then we fit [E. Todesco, J. P. Koutchouk, Valencia06] 15 m 1.9 Km 41° 49’ 55” N – 88 ° 15’ 07” W 1 Km 40° 53’ 02” N – 72 ° 52’ 32” W Nominal triplet l1=5.50 m l2=6.37 m Triplet l1=5.64 m l2=6.22 m

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 12 A flowchart: optics requirements How to fix the gradient This depends on matching conditions We require to have in Q4 “similar” beta functions to the nominal We find an empirical fit of the four cases 15 m 1.9 Km 41° 49’ 55” N – 88 ° 15’ 07” W 1 Km 40° 53’ 02” N – 72 ° 52’ 32” W

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 13 A flowchart: optics requirements How the integrated gradient depends on the triplet length For larger lengths, the integrated gradient becomes smaller since the triplet baricentre is moving away from the IP 15 m 1.9 Km 41° 49’ 55” N – 88 ° 15’ 07” W 1 Km 40° 53’ 02” N – 72 ° 52’ 32” W

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 14 A flowchart: technology limits 15 m 1.9 Km 41° 49’ 55” N – 88 ° 15’ 07” W 1 Km 40° 53’ 02” N – 72 ° 52’ 32” W 46° 14’ 15” N – 6 ° 02’ 51” E

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 15 A flowchart: technology limits The technology imposes a relation gradient-aperture Values for some LHC quadrupoles 15 m 1.9 Km 41° 49’ 55” N – 88 ° 15’ 07” W 1 Km 40° 53’ 02” N – 72 ° 52’ 32” W

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 16 A flowchart: technology limits Nb-Ti lay-outs for apertures 90 to 110 mm (MQY cable) [R. Ostojic, et al, PAC05 ] 15 m 1.9 Km 41° 49’ 55” N – 88 ° 15’ 07” W 1 Km 40° 53’ 02” N – 72 ° 52’ 32” W

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 17 A flowchart: technology limits First scaling laws estimates date back to the 90’s [L. Rossi, et al, INFN-TC 112 (1994)] 15 m 1.9 Km 41° 49’ 55” N – 88 ° 15’ 07” W 1 Km 40° 53’ 02” N – 72 ° 52’ 32” W

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 18 A flowchart: technology limits A semi-analytical formula has been proposed for Nb 3 Sn and Nb-Ti [L. Rossi, E. Todesco, Phys. Rev. STAB 9 (2006) ] 15 m 1.9 Km 41° 49’ 55” N – 88 ° 15’ 07” W 1 Km 40° 53’ 02” N – 72 ° 52’ 32” W

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 19 A flowchart: technology limits Assumption for low gradient, very long triplet [O. Bruning, R. De Maria, Valencia workshop 2006] 15 m 1.9 Km 41° 49’ 55” N – 88 ° 15’ 07” W 1 Km 40° 53’ 02” N – 72 ° 52’ 32” W

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 20 A flowchart: technology limits We computed three lay-outs with LHC MB cable, of apertures 100, 120, 140 mm – still at the max of what can be obtained 15 m 1.9 Km 41° 49’ 55” N – 88 ° 15’ 07” W 1 Km 40° 53’ 02” N – 72 ° 52’ 32” W

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 21 A flowchart: technology limits What can be done with the LHC cable beyond 110 mm ? Simple 3 block design based on the [24°,30°,36°] coil b 6 b 10 less than 1 unit at R ref =  /3 80% of critical gradient Iron at 25 mm from outer layer 15 m 1.9 Km 41° 49’ 55” N – 88 ° 15’ 07” W 40° 53’ 02” N – 72 ° 52’ 32” W

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 22 A flowchart: technology limits We give the detail of what can be obtained a bit better than previous computations since we used the cable measurements (better than specifications of around 10%) 15 m 1.9 Km 41° 49’ 55” N – 88 ° 15’ 07” W 1 Km 40° 53’ 02” N – 72 ° 52’ 32” W

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 23 A flowchart: technology limits We can now have aperture vs quadrupole length With two layers Nb-Ti we can build focusing triplet of 30 m, 110 mm aperture – or 34 m, 130 mm aperture With one layer (half cable), 15% longer … but cables are there 15 m 1.9 Km 41° 49’ 55” N – 88 ° 15’ 07” W 1 Km 40° 53’ 02” N – 72 ° 52’ 32” W

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 24 A flowchart: aperture requirements 15 m 1.9 Km 41° 49’ 55” N – 88 ° 15’ 07” W 1 Km 40° 53’ 02” N – 72 ° 52’ 32” W 46° 14’ 15” N – 6 ° 02’ 51” E

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 25 A flowchart: aperture requirements Longer triplet will give larger beta functions ! Larger, but not terribly larger … we find a fit as a ~77.5 m (where  * is the beta in the IP) [E. Todesco, J. P. Koutchouk, Valencia06] 15 m 1.9 Km 41° 49’ 55” N – 88 ° 15’ 07” W 1 Km 40° 53’ 02” N – 72 ° 52’ 32” W

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 26 A flowchart: aperture requirements 15 m 1.9 Km 41° 49’ 55” N – 88 ° 15’ 07” W 1 Km 40° 53’ 02” N – 72 ° 52’ 32” W 46° 14’ 15” N – 6 ° 02’ 51” E

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 27 A flowchart: aperture requirements  *,  max and the triplet length determine the aperture needs 10  : the nominal 13  : reduces the collimator impedance, and allowing a nominal beam intensity [E. Metral, ‘07] – 16  gives additional clearance Example: a 28 m triplet with 95 mm aperture would leave 6  for collimation at  * =0.55 m 15 m 1.9 Km 41° 49’ 55” N – 88 ° 15’ 07” W 1 Km 40° 53’ 02” N – 72 ° 52’ 32” W

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 28 A flowchart: aperture requirements Going at  * = 0.25 m the aperture needs become larger Example: a 34 m triplet with 130 mm aperture would leave 3  for collimation at  * =0.25 m Nice game … where to stop ? 15 m 1.9 Km 41° 49’ 55” N – 88 ° 15’ 07” W 1 Km 40° 53’ 02” N – 72 ° 52’ 32” W

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 29 CONTENTS Goals A flow-chart for determining triplet parameters Limits to long (and large) triplets Geometric aberrations Issues in magnet design 15 m 1.9 Km 41° 49’ 55” N – 88 ° 15’ 07” W 1 Km 40° 53’ 02” N – 72 ° 52’ 32” W

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 30 Limits to long triplets Limits to long triplets: space ? Present kicks in D1, D2  26 Tm Separation dipole D2 is 9.45 m with 3.8 T – can go up to 36 Tm D1 has a margin of 18% - could be pushed 15 m, if aperture is enough Otherwise, change D1 – in general, easy to recover space 15 m 1.9 Km 41° 49’ 55” N – 88 ° 15’ 07” W 1 Km 40° 53’ 02” N – 72 ° 52’ 32” W

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 31 Limits to long triplets Limits to long triplets: chromaticity ? Hypothesis: two IP strong focusing, one IP at 1 m, the other at 0.5 m The linear correction is saturated for  *  m limit of 90 per IP deduced from [S. Fartoukh, LHC Project Report 308 ] 15 m 1.9 Km 41° 49’ 55” N – 88 ° 15’ 07” W 1 Km 40° 53’ 02” N – 72 ° 52’ 32” W

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 32 Limits to long triplets Limits to long triplets: forces ? Lorentz forces at operational field induce large stresses Semi-analytical law [P. Fessia, F. Regis, E. Todesco, ASC 2006] gives values smaller than 150 MPa for apertures up to 250 mm – should not be a problem 1.9 Km 41° 49’ 55” N – 88 ° 15’ 07” W 1 Km 40° 53’ 02” N – 72 ° 52’ 32” W

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 33 Limits to long triplets Limits to long triplets: energy deposition ? Larger and longer triplet could have a much higher energy deposition, for the same luminosity Preliminary comparison of the baseline with a 10 m longer and twice larger triplet has been done [C. Hoa, F. Broggi, 2007] The larger and longer triplet has a smaller (~-30%) impinging power in W/m (energy per meter of triplet) Longer triplets will not give additional energy deposition Study on scaling laws for energy deposition is ongoing 1.9 Km 41° 49’ 55” N – 88 ° 15’ 07” W 1 Km 40° 53’ 02” N – 72 ° 52’ 32” W

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 34 Limits to long triplets We propose aperture for  * =0.25 m with 3  for collimation This would go up to  *  0.18 m without collimation clearance This would give the following parameters Total quadrupole length 34 m (+10 m w.r.t. baseline) Triplet length (with gaps) 40.5 m Operational gradient 122 T/m (20% safety factor on short sample) Beta function in the triplet of m at  * =0.25 m 15 m 1.9 Km 1 Km 40° 53’ 02” N – 72 ° 52’ 32” W

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 35 CONTENTS Goals A flow-chart for determining triplet parameters Limits to long (and large) triplets Geometric aberrations Issues in magnet design 15 m 1.9 Km 41° 49’ 55” N – 88 ° 15’ 07” W 1 Km 40° 53’ 02” N – 72 ° 52’ 32” W

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 36 Geometric aberrations and large apertures In it has been observed that large beta functions in the triplet may lead to insufficient dynamic aperture [R. De Maria, O. Bruning, EPAC06] Estimates based on tracking showed that there was a very strong reduction for an extreme case with  max =20000 m The large  in the triplet is the cause of this effect – for instance first order terms in multipoles scale as and larger beta functions are amplified by the exponent … A crucial ingredient is the estimate of the field errors b n

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 37 Geometric aberrations and large apertures Scaling law for field errors [B. Bellesia, et al, submitted to Phys. Rev. STAB ] The hypothesis: field errors only due to cable positioning Cable positioning independent of the aperture, based on LHC and RHIC data 15 m 1.9 Km 41° 49’ 55” N – 88 ° 15’ 07” W 1 Km Precision in coil positioning reconstructed from measurements

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 38 Geometric aberrations and large apertures Using the scaling for field errors, we evaluated the aberrations at  * =0.25 m as a function of the triplet aperture We normalized them to the values of the baseline at  * =0.55 m A triplet of 90 mm aperture has significantly larger aberrations A triplet of 130 mm has only 30% more Cross-check: solution of [R. De Maria, O. Bruning, EPAC06] would give a factor 3-7 larger aberrations

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 39 CONTENTS Goals A flow-chart for determining triplet parameters Limits to long (and large) triplets Geometric aberrations Issues in magnet design 15 m 1.9 Km 41° 49’ 55” N – 88 ° 15’ 07” W 1 Km 40° 53’ 02” N – 72 ° 52’ 32” W

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 40 ISSUES IN MAGNET DESIGN – main features Main parameters compared to other LHC quadrupoles Large aperture ? RHIC MQX: 130 mm aperture, 50 T/m at 4.2 K, 12 mm width coil Cable needed to wind one dipole unit length is enough RHIC large aperture quadrupole

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 41 ISSUES IN MAGNET DESIGN – field quality Field quality is critical at nominal field – optimization should include iron saturation, persistent currents not an issue Coil designed on the [24°,30°,36°] lay-out – 25 mm thick collars A first iteration will be needed to fine tune field quality Mid-plane shims should be included from the beginning, so that can be varied in both directions At least three identical models should be built to assess the random components Are critical !!

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 42 ISSUES IN MAGNET DESIGN – PROTECTION This MQXC is longer and larger than the previous ones Inductance similar to MQY, MB, MQXA Operating current similar to MB, MQ, MQXB Stored energy is 5 MJ: twice MQXA – 50% larger than one aperture of an MB Preliminary hot spot temperature evaluations show that the order of magnitudes are similar to the MB Time for firing quench heaters to avoid hot spot larger than 300 K must be not larger than 0.1 s [M. Sorbi, Qlasa code] challenging, but feasible

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 43 ISSUES IN MAGNET DESIGN – FORCES According to analytical model Lorentz forces induce a stress in the coil of 70 MPa, i.e. 40% more than for the MQXA-B (50 MPa) Does not look so critical, but mechanical structure should be carefully designed

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 44 ISSUES IN MAGNET DESIGN – FORCES Computations using FEM model [F. Borgnolutti] MQXC:  80 MPa MQXA:  70 MPa, MQXB:  50 MPA

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 45 Other options Shorter Q1 ? The beta function in Q1 is  half of  max  one can have at most  30% smaller aperture   30% shorter Q1   7% shorter triplet The gain in length is marginal, but one has two different designs (lengths, apertures, and cross-sections) – not a good bargain in my opinion Same lengths for Q1-3 and Q2 ? One can make an optics with same lengths – triplet must be 4 m longer, but different gradients (up to 20%) – is it worth ? 4-plet ? A 4-plet allows 20% smaller  max But the gradient is 30% more In absence of technology constraints, it would be better 3-plet is more efficient

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 46 CONCLUSIONS Proposed lay-out aims at  * = 0.25 m with 3  clearance for collimation  *  m without clearance, reaching the linear chromaticity correction limit The clearance should allow keeping geometric aberrations under control (we have a  max =12600 m) The lay-out is simple One aperture: 130 mm One gradient: 122 T/m One power supply – operational current A One cross-section: two layers with LHC MB cable Two lengths: 7.8, 9.2 m – moderate increase of triplet length w.r.t. baseline (+30%, i.e. from 30 to 40 m)

J.P. Koutchouk, L. Rossi, E. Todesco 30 th March 2007 – LHC phase-one upgrade based on Nb-Ti - 47 CONCLUSIONS Some issues to address Having a matched solution, looking at Q4-Q11 strengths Tracking to verify the scaling on aberrations D1 displacement and/or upgrade Design a simple and reliable a mechanical structure (vertical or horizontal assembly) making use of existing tooling Tolerances very important since we aim at very good field quality Phase-one upgrade vs. LARP and Nb 3 Sn r&d Phase two upgrade (the ‘real’ one) goals and schedule are not changed Nb 3 Sn r&d should be pursued with all efforts The proof of a long prototype is fundamental If we had available Nb 3 Sn magnets today, we would use them Moving D1  the goal of 200 T/m becomes less stringent HQ should aim at apertures much larger than 90 mm